Mister Exam

Other calculators

Integral of arcctg^2x/1+x^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |  /    2        \   
 |  |acot (x)    2|   
 |  |-------- + x | dx
 |  \   1         /   
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \left(x^{2} + \frac{\operatorname{acot}^{2}{\left(x \right)}}{1}\right)\, dx$$
Integral(acot(x)^2/1 + x^2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of is when :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Don't know the steps in finding this integral.

        But the integral is

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                            
 |                                 /           
 | /    2        \           3    |            
 | |acot (x)    2|          x     |     2      
 | |-------- + x | dx = C + -- +  | acot (x) dx
 | \   1         /          3     |            
 |                               /             
/                                              
$${{16\,\left(\int {{{x^2\,\left(\log \left(x^2+1\right)\right)^2 }\over{16\,x^2+16}}}{\;dx}+\int {{{\left(\log \left(x^2+1\right) \right)^2}\over{16\,x^2+16}}}{\;dx}+4\,\int {{{x^2\,\log \left(x^2+1 \right)}\over{16\,x^2+16}}}{\;dx}+12\,\int {{{\arctan ^2\left({{1 }\over{x}}\right)\,x^2}\over{16\,x^2+16}}}{\;dx}+8\,\int {{{\arctan \left({{1}\over{x}}\right)\,x}\over{16\,x^2+16}}}{\;dx}-12\,\left(- {{\arctan ^3x}\over{48}}-{{\arctan \left({{1}\over{x}}\right)\, \arctan ^2x}\over{16}}\right)+{{3\,\arctan ^2\left({{1}\over{x}} \right)\,\arctan x}\over{4}}\right)-x\,\left(\log \left(x^2+1\right) \right)^2+4\,{\rm atan2}\left(1 , x\right)^2\,x}\over{16}}+{{x^3 }\over{3}}$$
The answer [src]
  1                   
  /                   
 |                    
 |  / 2       2   \   
 |  \x  + acot (x)/ dx
 |                    
/                     
0                     
$$\int_{0}^{1}{\left({\rm arccot}\; x\right)^2+x^2\;dx}$$
=
=
  1                   
  /                   
 |                    
 |  / 2       2   \   
 |  \x  + acot (x)/ dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \left(x^{2} + \operatorname{acot}^{2}{\left(x \right)}\right)\, dx$$
Numerical answer [src]
1.6674075819519
1.6674075819519

    Use the examples entering the upper and lower limits of integration.