Integral of arcctg(5x) dx
The solution
The answer (Indefinite)
[src]
/ / 2\
| log\1 + 25*x /
| acot(5*x) dx = C + -------------- + x*acot(5*x)
| 10
/
$$\int \operatorname{acot}{\left(5 x \right)}\, dx = C + x \operatorname{acot}{\left(5 x \right)} + \frac{\log{\left(25 x^{2} + 1 \right)}}{10}$$
log(26)
------- + acot(5)
10
$$\operatorname{acot}{\left(5 \right)} + \frac{\log{\left(26 \right)}}{10}$$
=
log(26)
------- + acot(5)
10
$$\operatorname{acot}{\left(5 \right)} + \frac{\log{\left(26 \right)}}{10}$$
Use the examples entering the upper and lower limits of integration.