Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of sin(5x) Integral of sin(5x)
  • Integral of 0dx Integral of 0dx
  • Integral of -x+4 Integral of -x+4
  • Integral of (x-2)^2dx Integral of (x-2)^2dx
  • Identical expressions

  • atan(two x)/(pi*(one +4x^2))
  • arc tangent of gent of (2x) divide by ( Pi multiply by (1 plus 4x squared ))
  • arc tangent of gent of (two x) divide by ( Pi multiply by (one plus 4x squared ))
  • atan(2x)/(pi*(1+4x2))
  • atan2x/pi*1+4x2
  • atan(2x)/(pi*(1+4x²))
  • atan(2x)/(pi*(1+4x to the power of 2))
  • atan(2x)/(pi(1+4x^2))
  • atan(2x)/(pi(1+4x2))
  • atan2x/pi1+4x2
  • atan2x/pi1+4x^2
  • atan(2x) divide by (pi*(1+4x^2))
  • atan(2x)/(pi*(1+4x^2))dx
  • Similar expressions

  • atan(2x)/(pi*(1-4x^2))
  • arctan(2x)/(pi*(1+4x^2))

Integral of atan(2x)/(pi*(1+4x^2)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo                 
  /                 
 |                  
 |    atan(2*x)     
 |  ------------- dx
 |     /       2\   
 |  pi*\1 + 4*x /   
 |                  
/                   
0                   
$$\int\limits_{0}^{\infty} \frac{\operatorname{atan}{\left(2 x \right)}}{\pi \left(4 x^{2} + 1\right)}\, dx$$
Integral(atan(2*x)/((pi*(1 + 4*x^2))), (x, 0, oo))
The answer (Indefinite) [src]
  /                                 
 |                            2     
 |   atan(2*x)            atan (2*x)
 | ------------- dx = C + ----------
 |    /       2\             4*pi   
 | pi*\1 + 4*x /                    
 |                                  
/                                   
$$\int \frac{\operatorname{atan}{\left(2 x \right)}}{\pi \left(4 x^{2} + 1\right)}\, dx = C + \frac{\operatorname{atan}^{2}{\left(2 x \right)}}{4 \pi}$$
The graph
The answer [src]
pi
--
16
$$\frac{\pi}{16}$$
=
=
pi
--
16
$$\frac{\pi}{16}$$
pi/16

    Use the examples entering the upper and lower limits of integration.