Mister Exam

Other calculators

Integral of (atan2x)/1+4x^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |  /atan(2*x)      2\   
 |  |--------- + 4*x | dx
 |  \    1           /   
 |                       
/                        
0                        
$$\int\limits_{0}^{1} \left(4 x^{2} + \frac{\operatorname{atan}{\left(2 x \right)}}{1}\right)\, dx$$
Integral(atan(2*x)/1 + 4*x^2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Don't know the steps in finding this integral.

        But the integral is

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                              
 |                                /       2\      3              
 | /atan(2*x)      2\          log\1 + 4*x /   4*x               
 | |--------- + 4*x | dx = C - ------------- + ---- + x*atan(2*x)
 | \    1           /                4          3                
 |                                                               
/                                                                
$$\int \left(4 x^{2} + \frac{\operatorname{atan}{\left(2 x \right)}}{1}\right)\, dx = C + \frac{4 x^{3}}{3} + x \operatorname{atan}{\left(2 x \right)} - \frac{\log{\left(4 x^{2} + 1 \right)}}{4}$$
The graph
The answer [src]
4   log(5)          
- - ------ + atan(2)
3     4             
$$- \frac{\log{\left(5 \right)}}{4} + \operatorname{atan}{\left(2 \right)} + \frac{4}{3}$$
=
=
4   log(5)          
- - ------ + atan(2)
3     4             
$$- \frac{\log{\left(5 \right)}}{4} + \operatorname{atan}{\left(2 \right)} + \frac{4}{3}$$
4/3 - log(5)/4 + atan(2)
Numerical answer [src]
2.0381225730189
2.0381225730189

    Use the examples entering the upper and lower limits of integration.