Integral of atan^2(x)/x^7 dx
The solution
The answer (Indefinite)
[src]
/
|
| 2 / 2\ 2 2
| atan (x) 23*log\1 + x / atan (x) 1 4 23*log(x) atan(x) atan (x) atan(x) atan(x)
| -------- dx = C - -------------- - -------- - ----- + ----- + --------- - ------- - -------- - ------- + -------
| 7 90 6 4 2 45 3*x 6 5 3
| x 60*x 45*x 6*x 15*x 9*x
|
/
$$\int \frac{\operatorname{atan}^{2}{\left(x \right)}}{x^{7}}\, dx = C + \frac{23 \log{\left(x \right)}}{45} - \frac{23 \log{\left(x^{2} + 1 \right)}}{90} - \frac{\operatorname{atan}^{2}{\left(x \right)}}{6} - \frac{\operatorname{atan}{\left(x \right)}}{3 x} + \frac{4}{45 x^{2}} + \frac{\operatorname{atan}{\left(x \right)}}{9 x^{3}} - \frac{1}{60 x^{4}} - \frac{\operatorname{atan}{\left(x \right)}}{15 x^{5}} - \frac{\operatorname{atan}^{2}{\left(x \right)}}{6 x^{6}}$$
2
13 pi 13*pi 23*log(2)
- --- - --- + ----- + ---------
180 48 180 90
$$- \frac{\pi^{2}}{48} - \frac{13}{180} + \frac{23 \log{\left(2 \right)}}{90} + \frac{13 \pi}{180}$$
=
2
13 pi 13*pi 23*log(2)
- --- - --- + ----- + ---------
180 48 180 90
$$- \frac{\pi^{2}}{48} - \frac{13}{180} + \frac{23 \log{\left(2 \right)}}{90} + \frac{13 \pi}{180}$$
-13/180 - pi^2/48 + 13*pi/180 + 23*log(2)/90
Use the examples entering the upper and lower limits of integration.