Integral of arctan((2x+1)/sqrt(3)) dx
The solution
The answer (Indefinite)
[src]
/ / 2\ \
| | (2*x + 1) | |
| log|1 + ----------| ___ |
___ | \ 3 / \/ 3 /2*x + 1\|
/ \/ 3 *|- ------------------- + -----*(2*x + 1)*atan|-------||
| | 2 3 | ___ ||
| /2*x + 1\ \ \ \/ 3 //
| atan|-------| dx = C + -------------------------------------------------------------
| | ___ | 2
| \ \/ 3 /
|
/
∫atan(32x+1)dx=C+2333(2x+1)atan(32x+1)−2log(3(2x+1)2+1)
The graph
___
5*pi \/ 3 *log(3)
---- - ------------
12 4
−43log(3)+125π
=
___
5*pi \/ 3 *log(3)
---- - ------------
12 4
−43log(3)+125π
5*pi/12 - sqrt(3)*log(3)/4
Use the examples entering the upper and lower limits of integration.