Mister Exam

Other calculators

Integral of arcsinsqrt(1-5x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |      /   __________\   
 |      |  /        2 |   
 |  asin\\/  1 - 5*x  / dx
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \operatorname{asin}{\left(\sqrt{1 - 5 x^{2}} \right)}\, dx$$
Integral(asin(sqrt(1 - 5*x^2)), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of a constant is the constant times the variable of integration:

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

      TrigSubstitutionRule(theta=_theta, func=sqrt(5)*sin(_theta)/5, rewritten=sin(_theta)/5, substep=ConstantTimesRule(constant=1/5, other=sin(_theta), substep=TrigRule(func='sin', arg=_theta, context=sin(_theta), symbol=_theta), context=sin(_theta)/5, symbol=_theta), restriction=(x > -sqrt(5)/5) & (x < sqrt(5)/5), context=x**2/(sqrt(1 - 5*x**2)*sqrt(x**2)), symbol=x)

    So, the result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                                                              
 |                                                                                                               
 |     /   __________\                /   __________\         //    __________                                  \
 |     |  /        2 |                |  /        2 |     ___ ||   /        2           /       ___         ___\|
 | asin\\/  1 - 5*x  / dx = C + x*asin\\/  1 - 5*x  / + \/ 5 *|<-\/  1 - 5*x            |    -\/ 5        \/ 5 ||
 |                                                            ||---------------  for And|x > -------, x < -----||
/                                                             \\       5                \       5           5  //
$$\int \operatorname{asin}{\left(\sqrt{1 - 5 x^{2}} \right)}\, dx = C + x \operatorname{asin}{\left(\sqrt{1 - 5 x^{2}} \right)} + \sqrt{5} \left(\begin{cases} - \frac{\sqrt{1 - 5 x^{2}}}{5} & \text{for}\: x > - \frac{\sqrt{5}}{5} \wedge x < \frac{\sqrt{5}}{5} \end{cases}\right)$$
The graph
The answer [src]
  ___                      ___
\/ 5                 2*I*\/ 5 
----- + I*asinh(2) - ---------
  5                      5    
$$\frac{\sqrt{5}}{5} - \frac{2 \sqrt{5} i}{5} + i \operatorname{asinh}{\left(2 \right)}$$
=
=
  ___                      ___
\/ 5                 2*I*\/ 5 
----- + I*asinh(2) - ---------
  5                      5    
$$\frac{\sqrt{5}}{5} - \frac{2 \sqrt{5} i}{5} + i \operatorname{asinh}{\left(2 \right)}$$
sqrt(5)/5 + i*asinh(2) - 2*i*sqrt(5)/5
Numerical answer [src]
(0.447174177008474 + 0.549472714110548j)
(0.447174177008474 + 0.549472714110548j)

    Use the examples entering the upper and lower limits of integration.