1 / | | / __________\ | | / 2 | | asin\\/ 1 - 5*x / dx | / 0
Integral(asin(sqrt(1 - 5*x^2)), (x, 0, 1))
Use integration by parts:
Let and let .
Then .
To find :
The integral of a constant is the constant times the variable of integration:
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
TrigSubstitutionRule(theta=_theta, func=sqrt(5)*sin(_theta)/5, rewritten=sin(_theta)/5, substep=ConstantTimesRule(constant=1/5, other=sin(_theta), substep=TrigRule(func='sin', arg=_theta, context=sin(_theta), symbol=_theta), context=sin(_theta)/5, symbol=_theta), restriction=(x > -sqrt(5)/5) & (x < sqrt(5)/5), context=x**2/(sqrt(1 - 5*x**2)*sqrt(x**2)), symbol=x)
So, the result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | | / __________\ / __________\ // __________ \ | | / 2 | | / 2 | ___ || / 2 / ___ ___\| | asin\\/ 1 - 5*x / dx = C + x*asin\\/ 1 - 5*x / + \/ 5 *|<-\/ 1 - 5*x | -\/ 5 \/ 5 || | ||--------------- for And|x > -------, x < -----|| / \\ 5 \ 5 5 //
___ ___ \/ 5 2*I*\/ 5 ----- + I*asinh(2) - --------- 5 5
=
___ ___ \/ 5 2*I*\/ 5 ----- + I*asinh(2) - --------- 5 5
sqrt(5)/5 + i*asinh(2) - 2*i*sqrt(5)/5
(0.447174177008474 + 0.549472714110548j)
(0.447174177008474 + 0.549472714110548j)
Use the examples entering the upper and lower limits of integration.