Mister Exam

Other calculators

Integral of (arcsin(ln(x)))/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |  asin(log(x))   
 |  ------------ dx
 |       x         
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{\operatorname{asin}{\left(\log{\left(x \right)} \right)}}{x}\, dx$$
Integral(asin(log(x))/x, (x, 0, 1))
The answer (Indefinite) [src]
  /                                                            
 |                          _____________                      
 | asin(log(x))            /        2                          
 | ------------ dx = C + \/  1 - log (x)  + asin(log(x))*log(x)
 |      x                                                      
 |                                                             
/                                                              
$$\log x\,\arcsin \log x+\sqrt{1-\left(\log x\right)^2}$$
The answer [src]
1 + oo*I
$${\it \%a}$$
=
=
1 + oo*I
$$1 + \infty i$$
Numerical answer [src]
(-68.2586014322472 + 153.4125661256j)
(-68.2586014322472 + 153.4125661256j)

    Use the examples entering the upper and lower limits of integration.