1 / | | / 3 \ | |acos (5*x) 2| | |---------- - 25*x | dx | | ___ | | \ \/ 1 / | / 0
Integral(acos(5*x)^3/sqrt(1) - 25*x^2, (x, 0, 1))
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Don't know the steps in finding this integral.
But the integral is
So, the result is:
The result is:
Add the constant of integration:
The answer is:
/ | ___________ ___________ | / 3 \ 3 / 2 / 2 2 | |acos (5*x) 2| 25*x 6*\/ 1 - 25*x 3 3*\/ 1 - 25*x *acos (5*x) | |---------- - 25*x | dx = C - ----- + ---------------- + x*acos (5*x) - 6*x*acos(5*x) - --------------------------- | | ___ | 3 5 5 | \ \/ 1 / | /
2 ___ ___ 2 143 3 3*pi 12*I*\/ 6 6*I*\/ 6 *acos (5) - --- + acos (5) - 6*acos(5) + ----- + ---------- - ------------------ 15 20 5 5
=
2 ___ ___ 2 143 3 3*pi 12*I*\/ 6 6*I*\/ 6 *acos (5) - --- + acos (5) - 6*acos(5) + ----- + ---------- - ------------------ 15 20 5 5
-143/15 + acos(5)^3 - 6*acos(5) + 3*pi^2/20 + 12*i*sqrt(6)/5 - 6*i*sqrt(6)*acos(5)^2/5
(-8.05288765723817 - 4.47590456084446j)
(-8.05288765723817 - 4.47590456084446j)
Use the examples entering the upper and lower limits of integration.