Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of e^(x*(-3))*dx Integral of e^(x*(-3))*dx
  • Integral of e^(x+e^x) Integral of e^(x+e^x)
  • Integral of x^(2/3)*dx Integral of x^(2/3)*dx
  • Integral of e^(4*x)*dx Integral of e^(4*x)*dx
  • Identical expressions

  • arccos^ three *(5x)/√ one − two 5x^2
  • arc co sinus of e of cubed multiply by (5x) divide by √1−25x squared
  • arc co sinus of e of to the power of three multiply by (5x) divide by √ one − two 5x squared
  • arccos3*(5x)/√1−25x2
  • arccos3*5x/√1−25x2
  • arccos³*(5x)/√1−25x²
  • arccos to the power of 3*(5x)/√1−25x to the power of 2
  • arccos^3(5x)/√1−25x^2
  • arccos3(5x)/√1−25x2
  • arccos35x/√1−25x2
  • arccos^35x/√1−25x^2
  • arccos^3*(5x) divide by √1−25x^2
  • arccos^3*(5x)/√1−25x^2dx

Integral of arccos^3*(5x)/√1−25x^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                        
  /                        
 |                         
 |  /    3             \   
 |  |acos (5*x)       2|   
 |  |---------- - 25*x | dx
 |  |    ___           |   
 |  \  \/ 1            /   
 |                         
/                          
0                          
$$\int\limits_{0}^{1} \left(- 25 x^{2} + \frac{\operatorname{acos}^{3}{\left(5 x \right)}}{\sqrt{1}}\right)\, dx$$
Integral(acos(5*x)^3/sqrt(1) - 25*x^2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Don't know the steps in finding this integral.

        But the integral is

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                                                                   
 |                                            ___________                                       ___________           
 | /    3             \              3       /         2                                       /         2      2     
 | |acos (5*x)       2|          25*x    6*\/  1 - 25*x           3                        3*\/  1 - 25*x  *acos (5*x)
 | |---------- - 25*x | dx = C - ----- + ---------------- + x*acos (5*x) - 6*x*acos(5*x) - ---------------------------
 | |    ___           |            3            5                                                       5             
 | \  \/ 1            /                                                                                               
 |                                                                                                                    
/                                                                                                                     
$$\int \left(- 25 x^{2} + \frac{\operatorname{acos}^{3}{\left(5 x \right)}}{\sqrt{1}}\right)\, dx = C - \frac{25 x^{3}}{3} + x \operatorname{acos}^{3}{\left(5 x \right)} - 6 x \operatorname{acos}{\left(5 x \right)} - \frac{3 \sqrt{1 - 25 x^{2}} \operatorname{acos}^{2}{\left(5 x \right)}}{5} + \frac{6 \sqrt{1 - 25 x^{2}}}{5}$$
The graph
The answer [src]
                                   2          ___         ___     2   
  143       3                  3*pi    12*I*\/ 6    6*I*\/ 6 *acos (5)
- --- + acos (5) - 6*acos(5) + ----- + ---------- - ------------------
   15                            20        5                5         
$$- \frac{143}{15} + \frac{3 \pi^{2}}{20} - 6 \operatorname{acos}{\left(5 \right)} + \operatorname{acos}^{3}{\left(5 \right)} + \frac{12 \sqrt{6} i}{5} - \frac{6 \sqrt{6} i \operatorname{acos}^{2}{\left(5 \right)}}{5}$$
=
=
                                   2          ___         ___     2   
  143       3                  3*pi    12*I*\/ 6    6*I*\/ 6 *acos (5)
- --- + acos (5) - 6*acos(5) + ----- + ---------- - ------------------
   15                            20        5                5         
$$- \frac{143}{15} + \frac{3 \pi^{2}}{20} - 6 \operatorname{acos}{\left(5 \right)} + \operatorname{acos}^{3}{\left(5 \right)} + \frac{12 \sqrt{6} i}{5} - \frac{6 \sqrt{6} i \operatorname{acos}^{2}{\left(5 \right)}}{5}$$
-143/15 + acos(5)^3 - 6*acos(5) + 3*pi^2/20 + 12*i*sqrt(6)/5 - 6*i*sqrt(6)*acos(5)^2/5
Numerical answer [src]
(-8.05288765723817 - 4.47590456084446j)
(-8.05288765723817 - 4.47590456084446j)

    Use the examples entering the upper and lower limits of integration.