Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of 1/(x^2+3) Integral of 1/(x^2+3)
  • Integral of -4*x*exp(-2*x) Integral of -4*x*exp(-2*x)
  • Integral of a Integral of a
  • Integral of e^-t Integral of e^-t
  • Identical expressions

  • (arccos(3x))^ two /(sqrt(one -9x^ two))
  • (arc co sinus of e of (3x)) squared divide by ( square root of (1 minus 9x squared ))
  • (arc co sinus of e of (3x)) to the power of two divide by ( square root of (one minus 9x to the power of two))
  • (arccos(3x))^2/(√(1-9x^2))
  • (arccos(3x))2/(sqrt(1-9x2))
  • arccos3x2/sqrt1-9x2
  • (arccos(3x))²/(sqrt(1-9x²))
  • (arccos(3x)) to the power of 2/(sqrt(1-9x to the power of 2))
  • arccos3x^2/sqrt1-9x^2
  • (arccos(3x))^2 divide by (sqrt(1-9x^2))
  • (arccos(3x))^2/(sqrt(1-9x^2))dx
  • Similar expressions

  • x+(arccos3x)^2/sqrt(1-9x^2)
  • (arccos(3x))^2/(sqrt(1+9x^2))

Integral of (arccos(3x))^2/(sqrt(1-9x^2)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |        2         
 |    acos (3*x)    
 |  ------------- dx
 |     __________   
 |    /        2    
 |  \/  1 - 9*x     
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \frac{\operatorname{acos}^{2}{\left(3 x \right)}}{\sqrt{1 - 9 x^{2}}}\, dx$$
Integral(acos(3*x)^2/sqrt(1 - 9*x^2), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                 
 |                                  
 |       2                    3     
 |   acos (3*x)           acos (3*x)
 | ------------- dx = C - ----------
 |    __________              9     
 |   /        2                     
 | \/  1 - 9*x                      
 |                                  
/                                   
$$\int \frac{\operatorname{acos}^{2}{\left(3 x \right)}}{\sqrt{1 - 9 x^{2}}}\, dx = C - \frac{\operatorname{acos}^{3}{\left(3 x \right)}}{9}$$
The graph
The answer [src]
      3        3
  acos (3)   pi 
- -------- + ---
     9        72
$$\frac{\pi^{3}}{72} - \frac{\operatorname{acos}^{3}{\left(3 \right)}}{9}$$
=
=
      3        3
  acos (3)   pi 
- -------- + ---
     9        72
$$\frac{\pi^{3}}{72} - \frac{\operatorname{acos}^{3}{\left(3 \right)}}{9}$$
-acos(3)^3/9 + pi^3/72
Numerical answer [src]
(0.430059689244218 + 0.608241744480679j)
(0.430059689244218 + 0.608241744480679j)

    Use the examples entering the upper and lower limits of integration.