Mister Exam

Other calculators

Integral of ((Artan(x))^2)/1+x^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |  /    2        \   
 |  |atan (x)    2|   
 |  |-------- + x | dx
 |  \   1         /   
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \left(x^{2} + \frac{\operatorname{atan}^{2}{\left(x \right)}}{1}\right)\, dx$$
Integral(atan(x)^2/1 + x^2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of is when :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Don't know the steps in finding this integral.

        But the integral is

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                            
 |                                 /           
 | /    2        \           3    |            
 | |atan (x)    2|          x     |     2      
 | |-------- + x | dx = C + -- +  | atan (x) dx
 | \   1         /          3     |            
 |                               /             
/                                              
$$\int \left(x^{2} + \frac{\operatorname{atan}^{2}{\left(x \right)}}{1}\right)\, dx = C + \frac{x^{3}}{3} + \int \operatorname{atan}^{2}{\left(x \right)}\, dx$$
The answer [src]
  1                   
  /                   
 |                    
 |  / 2       2   \   
 |  \x  + atan (x)/ dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \left(x^{2} + \operatorname{atan}^{2}{\left(x \right)}\right)\, dx$$
=
=
  1                   
  /                   
 |                    
 |  / 2       2   \   
 |  \x  + atan (x)/ dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \left(x^{2} + \operatorname{atan}^{2}{\left(x \right)}\right)\, dx$$
Numerical answer [src]
0.5786145368001
0.5786145368001

    Use the examples entering the upper and lower limits of integration.