Mister Exam

Other calculators


(9x-4)/((3x-1)^2)

Integral of (9x-4)/((3x-1)^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2              
  /              
 |               
 |   9*x - 4     
 |  ---------- dx
 |           2   
 |  (3*x - 1)    
 |               
/                
1                
$$\int\limits_{1}^{2} \frac{9 x - 4}{\left(3 x - 1\right)^{2}}\, dx$$
Integral((9*x - 1*4)/((3*x - 1*1)^2), (x, 1, 2))
The answer (Indefinite) [src]
  /                                                
 |                                                 
 |  9*x - 4                 1                      
 | ---------- dx = C + ------------ + log(-1 + 3*x)
 |          2          3*(-1 + 3*x)                
 | (3*x - 1)                                       
 |                                                 
/                                                  
$$\log \left(3\,x-1\right)+{{1}\over{9\,x-3}}$$
The graph
The answer [src]
-1/10 - log(2) + log(5)
$$\log 5-\log 2-{{1}\over{10}}$$
=
=
-1/10 - log(2) + log(5)
$$- \log{\left(2 \right)} - \frac{1}{10} + \log{\left(5 \right)}$$
Numerical answer [src]
0.816290731874155
0.816290731874155
The graph
Integral of (9x-4)/((3x-1)^2) dx

    Use the examples entering the upper and lower limits of integration.