Integral of (8x^3-2x)^4 dx
The solution
Detail solution
-
Rewrite the integrand:
(8x3−2x)4=4096x12−4096x10+1536x8−256x6+16x4
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫4096x12dx=4096∫x12dx
-
The integral of xn is n+1xn+1 when n=−1:
∫x12dx=13x13
So, the result is: 134096x13
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−4096x10)dx=−4096∫x10dx
-
The integral of xn is n+1xn+1 when n=−1:
∫x10dx=11x11
So, the result is: −114096x11
-
The integral of a constant times a function is the constant times the integral of the function:
∫1536x8dx=1536∫x8dx
-
The integral of xn is n+1xn+1 when n=−1:
∫x8dx=9x9
So, the result is: 3512x9
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−256x6)dx=−256∫x6dx
-
The integral of xn is n+1xn+1 when n=−1:
∫x6dx=7x7
So, the result is: −7256x7
-
The integral of a constant times a function is the constant times the integral of the function:
∫16x4dx=16∫x4dx
-
The integral of xn is n+1xn+1 when n=−1:
∫x4dx=5x5
So, the result is: 516x5
The result is: 134096x13−114096x11+3512x9−7256x7+516x5
-
Now simplify:
1501516x5⋅(295680x8−349440x6+160160x4−34320x2+3003)
-
Add the constant of integration:
1501516x5⋅(295680x8−349440x6+160160x4−34320x2+3003)+constant
The answer is:
1501516x5⋅(295680x8−349440x6+160160x4−34320x2+3003)+constant
The answer (Indefinite)
[src]
/
|
| 4 11 7 5 9 13
| / 3 \ 4096*x 256*x 16*x 512*x 4096*x
| \8*x - 2*x/ dx = C - -------- - ------ + ----- + ------ + --------
| 11 7 5 3 13
/
134096x13−114096x11+3512x9−7256x7+516x5
The graph
Use the examples entering the upper and lower limits of integration.