Mister Exam

Other calculators


(8x^3-2x)^4

Integral of (8x^3-2x)^4 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0                 
  /                 
 |                  
 |              4   
 |  /   3      \    
 |  \8*x  - 2*x/  dx
 |                  
/                   
0                   
00(8x32x)4dx\int\limits_{0}^{0} \left(8 x^{3} - 2 x\right)^{4}\, dx
Integral((8*x^3 - 2*x)^4, (x, 0, 0))
Detail solution
  1. Rewrite the integrand:

    (8x32x)4=4096x124096x10+1536x8256x6+16x4\left(8 x^{3} - 2 x\right)^{4} = 4096 x^{12} - 4096 x^{10} + 1536 x^{8} - 256 x^{6} + 16 x^{4}

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      4096x12dx=4096x12dx\int 4096 x^{12}\, dx = 4096 \int x^{12}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x12dx=x1313\int x^{12}\, dx = \frac{x^{13}}{13}

      So, the result is: 4096x1313\frac{4096 x^{13}}{13}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (4096x10)dx=4096x10dx\int \left(- 4096 x^{10}\right)\, dx = - 4096 \int x^{10}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x10dx=x1111\int x^{10}\, dx = \frac{x^{11}}{11}

      So, the result is: 4096x1111- \frac{4096 x^{11}}{11}

    1. The integral of a constant times a function is the constant times the integral of the function:

      1536x8dx=1536x8dx\int 1536 x^{8}\, dx = 1536 \int x^{8}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x8dx=x99\int x^{8}\, dx = \frac{x^{9}}{9}

      So, the result is: 512x93\frac{512 x^{9}}{3}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (256x6)dx=256x6dx\int \left(- 256 x^{6}\right)\, dx = - 256 \int x^{6}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x6dx=x77\int x^{6}\, dx = \frac{x^{7}}{7}

      So, the result is: 256x77- \frac{256 x^{7}}{7}

    1. The integral of a constant times a function is the constant times the integral of the function:

      16x4dx=16x4dx\int 16 x^{4}\, dx = 16 \int x^{4}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x4dx=x55\int x^{4}\, dx = \frac{x^{5}}{5}

      So, the result is: 16x55\frac{16 x^{5}}{5}

    The result is: 4096x13134096x1111+512x93256x77+16x55\frac{4096 x^{13}}{13} - \frac{4096 x^{11}}{11} + \frac{512 x^{9}}{3} - \frac{256 x^{7}}{7} + \frac{16 x^{5}}{5}

  3. Now simplify:

    16x5(295680x8349440x6+160160x434320x2+3003)15015\frac{16 x^{5} \cdot \left(295680 x^{8} - 349440 x^{6} + 160160 x^{4} - 34320 x^{2} + 3003\right)}{15015}

  4. Add the constant of integration:

    16x5(295680x8349440x6+160160x434320x2+3003)15015+constant\frac{16 x^{5} \cdot \left(295680 x^{8} - 349440 x^{6} + 160160 x^{4} - 34320 x^{2} + 3003\right)}{15015}+ \mathrm{constant}


The answer is:

16x5(295680x8349440x6+160160x434320x2+3003)15015+constant\frac{16 x^{5} \cdot \left(295680 x^{8} - 349440 x^{6} + 160160 x^{4} - 34320 x^{2} + 3003\right)}{15015}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                                    
 |                                                                     
 |             4                11        7       5        9         13
 | /   3      \           4096*x     256*x    16*x    512*x    4096*x  
 | \8*x  - 2*x/  dx = C - -------- - ------ + ----- + ------ + --------
 |                           11        7        5       3         13   
/                                                                      
4096x13134096x1111+512x93256x77+16x55{{4096\,x^{13}}\over{13}}-{{4096\,x^{11}}\over{11}}+{{512\,x^9 }\over{3}}-{{256\,x^7}\over{7}}+{{16\,x^5}\over{5}}
The graph
0.001.000.100.200.300.400.500.600.700.800.9001
The answer [src]
0
00
=
=
0
00
Numerical answer [src]
0.0
0.0
The graph
Integral of (8x^3-2x)^4 dx

    Use the examples entering the upper and lower limits of integration.