Mister Exam

Other calculators

Integral of (8x-1)sin(5x+3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                          
  /                          
 |                           
 |  (8*x - 1)*sin(5*x + 3) dx
 |                           
/                            
0                            
01(8x1)sin(5x+3)dx\int\limits_{0}^{1} \left(8 x - 1\right) \sin{\left(5 x + 3 \right)}\, dx
Integral((8*x - 1)*sin(5*x + 3), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

      (8x1)sin(5x+3)=8xsin(5x+3)sin(5x+3)\left(8 x - 1\right) \sin{\left(5 x + 3 \right)} = 8 x \sin{\left(5 x + 3 \right)} - \sin{\left(5 x + 3 \right)}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        8xsin(5x+3)dx=8xsin(5x+3)dx\int 8 x \sin{\left(5 x + 3 \right)}\, dx = 8 \int x \sin{\left(5 x + 3 \right)}\, dx

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(x)=xu{\left(x \right)} = x and let dv(x)=sin(5x+3)\operatorname{dv}{\left(x \right)} = \sin{\left(5 x + 3 \right)}.

          Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

          To find v(x)v{\left(x \right)}:

          1. Let u=5x+3u = 5 x + 3.

            Then let du=5dxdu = 5 dx and substitute du5\frac{du}{5}:

            sin(u)5du\int \frac{\sin{\left(u \right)}}{5}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              sin(u)du=sin(u)du5\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{5}

              1. The integral of sine is negative cosine:

                sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

              So, the result is: cos(u)5- \frac{\cos{\left(u \right)}}{5}

            Now substitute uu back in:

            cos(5x+3)5- \frac{\cos{\left(5 x + 3 \right)}}{5}

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          (cos(5x+3)5)dx=cos(5x+3)dx5\int \left(- \frac{\cos{\left(5 x + 3 \right)}}{5}\right)\, dx = - \frac{\int \cos{\left(5 x + 3 \right)}\, dx}{5}

          1. Let u=5x+3u = 5 x + 3.

            Then let du=5dxdu = 5 dx and substitute du5\frac{du}{5}:

            cos(u)5du\int \frac{\cos{\left(u \right)}}{5}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(u)du=cos(u)du5\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{5}

              1. The integral of cosine is sine:

                cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

              So, the result is: sin(u)5\frac{\sin{\left(u \right)}}{5}

            Now substitute uu back in:

            sin(5x+3)5\frac{\sin{\left(5 x + 3 \right)}}{5}

          So, the result is: sin(5x+3)25- \frac{\sin{\left(5 x + 3 \right)}}{25}

        So, the result is: 8xcos(5x+3)5+8sin(5x+3)25- \frac{8 x \cos{\left(5 x + 3 \right)}}{5} + \frac{8 \sin{\left(5 x + 3 \right)}}{25}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (sin(5x+3))dx=sin(5x+3)dx\int \left(- \sin{\left(5 x + 3 \right)}\right)\, dx = - \int \sin{\left(5 x + 3 \right)}\, dx

        1. Let u=5x+3u = 5 x + 3.

          Then let du=5dxdu = 5 dx and substitute du5\frac{du}{5}:

          sin(u)5du\int \frac{\sin{\left(u \right)}}{5}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            sin(u)du=sin(u)du5\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{5}

            1. The integral of sine is negative cosine:

              sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

            So, the result is: cos(u)5- \frac{\cos{\left(u \right)}}{5}

          Now substitute uu back in:

          cos(5x+3)5- \frac{\cos{\left(5 x + 3 \right)}}{5}

        So, the result is: cos(5x+3)5\frac{\cos{\left(5 x + 3 \right)}}{5}

      The result is: 8xcos(5x+3)5+8sin(5x+3)25+cos(5x+3)5- \frac{8 x \cos{\left(5 x + 3 \right)}}{5} + \frac{8 \sin{\left(5 x + 3 \right)}}{25} + \frac{\cos{\left(5 x + 3 \right)}}{5}

    Method #2

    1. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(x)=8x1u{\left(x \right)} = 8 x - 1 and let dv(x)=sin(5x+3)\operatorname{dv}{\left(x \right)} = \sin{\left(5 x + 3 \right)}.

      Then du(x)=8\operatorname{du}{\left(x \right)} = 8.

      To find v(x)v{\left(x \right)}:

      1. Let u=5x+3u = 5 x + 3.

        Then let du=5dxdu = 5 dx and substitute du5\frac{du}{5}:

        sin(u)5du\int \frac{\sin{\left(u \right)}}{5}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          sin(u)du=sin(u)du5\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{5}

          1. The integral of sine is negative cosine:

            sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

          So, the result is: cos(u)5- \frac{\cos{\left(u \right)}}{5}

        Now substitute uu back in:

        cos(5x+3)5- \frac{\cos{\left(5 x + 3 \right)}}{5}

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      (8cos(5x+3)5)dx=8cos(5x+3)dx5\int \left(- \frac{8 \cos{\left(5 x + 3 \right)}}{5}\right)\, dx = - \frac{8 \int \cos{\left(5 x + 3 \right)}\, dx}{5}

      1. Let u=5x+3u = 5 x + 3.

        Then let du=5dxdu = 5 dx and substitute du5\frac{du}{5}:

        cos(u)5du\int \frac{\cos{\left(u \right)}}{5}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          cos(u)du=cos(u)du5\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{5}

          1. The integral of cosine is sine:

            cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

          So, the result is: sin(u)5\frac{\sin{\left(u \right)}}{5}

        Now substitute uu back in:

        sin(5x+3)5\frac{\sin{\left(5 x + 3 \right)}}{5}

      So, the result is: 8sin(5x+3)25- \frac{8 \sin{\left(5 x + 3 \right)}}{25}

    Method #3

    1. Rewrite the integrand:

      (8x1)sin(5x+3)=8xsin(5x+3)sin(5x+3)\left(8 x - 1\right) \sin{\left(5 x + 3 \right)} = 8 x \sin{\left(5 x + 3 \right)} - \sin{\left(5 x + 3 \right)}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        8xsin(5x+3)dx=8xsin(5x+3)dx\int 8 x \sin{\left(5 x + 3 \right)}\, dx = 8 \int x \sin{\left(5 x + 3 \right)}\, dx

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(x)=xu{\left(x \right)} = x and let dv(x)=sin(5x+3)\operatorname{dv}{\left(x \right)} = \sin{\left(5 x + 3 \right)}.

          Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

          To find v(x)v{\left(x \right)}:

          1. Let u=5x+3u = 5 x + 3.

            Then let du=5dxdu = 5 dx and substitute du5\frac{du}{5}:

            sin(u)5du\int \frac{\sin{\left(u \right)}}{5}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              sin(u)du=sin(u)du5\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{5}

              1. The integral of sine is negative cosine:

                sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

              So, the result is: cos(u)5- \frac{\cos{\left(u \right)}}{5}

            Now substitute uu back in:

            cos(5x+3)5- \frac{\cos{\left(5 x + 3 \right)}}{5}

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          (cos(5x+3)5)dx=cos(5x+3)dx5\int \left(- \frac{\cos{\left(5 x + 3 \right)}}{5}\right)\, dx = - \frac{\int \cos{\left(5 x + 3 \right)}\, dx}{5}

          1. Let u=5x+3u = 5 x + 3.

            Then let du=5dxdu = 5 dx and substitute du5\frac{du}{5}:

            cos(u)5du\int \frac{\cos{\left(u \right)}}{5}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(u)du=cos(u)du5\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{5}

              1. The integral of cosine is sine:

                cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

              So, the result is: sin(u)5\frac{\sin{\left(u \right)}}{5}

            Now substitute uu back in:

            sin(5x+3)5\frac{\sin{\left(5 x + 3 \right)}}{5}

          So, the result is: sin(5x+3)25- \frac{\sin{\left(5 x + 3 \right)}}{25}

        So, the result is: 8xcos(5x+3)5+8sin(5x+3)25- \frac{8 x \cos{\left(5 x + 3 \right)}}{5} + \frac{8 \sin{\left(5 x + 3 \right)}}{25}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (sin(5x+3))dx=sin(5x+3)dx\int \left(- \sin{\left(5 x + 3 \right)}\right)\, dx = - \int \sin{\left(5 x + 3 \right)}\, dx

        1. Let u=5x+3u = 5 x + 3.

          Then let du=5dxdu = 5 dx and substitute du5\frac{du}{5}:

          sin(u)5du\int \frac{\sin{\left(u \right)}}{5}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            sin(u)du=sin(u)du5\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{5}

            1. The integral of sine is negative cosine:

              sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

            So, the result is: cos(u)5- \frac{\cos{\left(u \right)}}{5}

          Now substitute uu back in:

          cos(5x+3)5- \frac{\cos{\left(5 x + 3 \right)}}{5}

        So, the result is: cos(5x+3)5\frac{\cos{\left(5 x + 3 \right)}}{5}

      The result is: 8xcos(5x+3)5+8sin(5x+3)25+cos(5x+3)5- \frac{8 x \cos{\left(5 x + 3 \right)}}{5} + \frac{8 \sin{\left(5 x + 3 \right)}}{25} + \frac{\cos{\left(5 x + 3 \right)}}{5}

  2. Add the constant of integration:

    8xcos(5x+3)5+8sin(5x+3)25+cos(5x+3)5+constant- \frac{8 x \cos{\left(5 x + 3 \right)}}{5} + \frac{8 \sin{\left(5 x + 3 \right)}}{25} + \frac{\cos{\left(5 x + 3 \right)}}{5}+ \mathrm{constant}


The answer is:

8xcos(5x+3)5+8sin(5x+3)25+cos(5x+3)5+constant- \frac{8 x \cos{\left(5 x + 3 \right)}}{5} + \frac{8 \sin{\left(5 x + 3 \right)}}{25} + \frac{\cos{\left(5 x + 3 \right)}}{5}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                                                
 |                                 cos(3 + 5*x)   8*sin(3 + 5*x)   8*x*cos(3 + 5*x)
 | (8*x - 1)*sin(5*x + 3) dx = C + ------------ + -------------- - ----------------
 |                                      5               25                5        
/                                                                                  
(8x1)sin(5x+3)dx=C8xcos(5x+3)5+8sin(5x+3)25+cos(5x+3)5\int \left(8 x - 1\right) \sin{\left(5 x + 3 \right)}\, dx = C - \frac{8 x \cos{\left(5 x + 3 \right)}}{5} + \frac{8 \sin{\left(5 x + 3 \right)}}{25} + \frac{\cos{\left(5 x + 3 \right)}}{5}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-1010
The answer [src]
  8*sin(3)   7*cos(8)   cos(3)   8*sin(8)
- -------- - -------- - ------ + --------
     25         5         5         25   
8sin(3)25cos(3)57cos(8)5+8sin(8)25- \frac{8 \sin{\left(3 \right)}}{25} - \frac{\cos{\left(3 \right)}}{5} - \frac{7 \cos{\left(8 \right)}}{5} + \frac{8 \sin{\left(8 \right)}}{25}
=
=
  8*sin(3)   7*cos(8)   cos(3)   8*sin(8)
- -------- - -------- - ------ + --------
     25         5         5         25   
8sin(3)25cos(3)57cos(8)5+8sin(8)25- \frac{8 \sin{\left(3 \right)}}{25} - \frac{\cos{\left(3 \right)}}{5} - \frac{7 \cos{\left(8 \right)}}{5} + \frac{8 \sin{\left(8 \right)}}{25}
-8*sin(3)/25 - 7*cos(8)/5 - cos(3)/5 + 8*sin(8)/25
Numerical answer [src]
0.673134782992473
0.673134782992473

    Use the examples entering the upper and lower limits of integration.