Mister Exam

Other calculators

Integral of (7x+4)*sin*(3x/8) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |               /3*x\   
 |  (7*x + 4)*sin|---| dx
 |               \ 8 /   
 |                       
/                        
0                        
$$\int\limits_{0}^{1} \left(7 x + 4\right) \sin{\left(\frac{3 x}{8} \right)}\, dx$$
Integral((7*x + 4)*sin((3*x)/8), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of sine is negative cosine:

              So, the result is:

            Now substitute back in:

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of cosine is sine:

              So, the result is:

            Now substitute back in:

          So, the result is:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of sine is negative cosine:

            So, the result is:

          Now substitute back in:

        So, the result is:

      The result is:

    Method #2

    1. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of sine is negative cosine:

          So, the result is:

        Now substitute back in:

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of cosine is sine:

          So, the result is:

        Now substitute back in:

      So, the result is:

    Method #3

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of sine is negative cosine:

              So, the result is:

            Now substitute back in:

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of cosine is sine:

              So, the result is:

            Now substitute back in:

          So, the result is:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of sine is negative cosine:

            So, the result is:

          Now substitute back in:

        So, the result is:

      The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                  /3*x\          /3*x\           /3*x\
 |                             32*cos|---|   448*sin|---|   56*x*cos|---|
 |              /3*x\                \ 8 /          \ 8 /           \ 8 /
 | (7*x + 4)*sin|---| dx = C - ----------- + ------------ - -------------
 |              \ 8 /               3             9               3      
 |                                                                       
/                                                                        
$$\int \left(7 x + 4\right) \sin{\left(\frac{3 x}{8} \right)}\, dx = C - \frac{56 x \cos{\left(\frac{3 x}{8} \right)}}{3} + \frac{448 \sin{\left(\frac{3 x}{8} \right)}}{9} - \frac{32 \cos{\left(\frac{3 x}{8} \right)}}{3}$$
The graph
The answer [src]
32   88*cos(3/8)   448*sin(3/8)
-- - ----------- + ------------
3         3             9      
$$- \frac{88 \cos{\left(\frac{3}{8} \right)}}{3} + \frac{32}{3} + \frac{448 \sin{\left(\frac{3}{8} \right)}}{9}$$
=
=
32   88*cos(3/8)   448*sin(3/8)
-- - ----------- + ------------
3         3             9      
$$- \frac{88 \cos{\left(\frac{3}{8} \right)}}{3} + \frac{32}{3} + \frac{448 \sin{\left(\frac{3}{8} \right)}}{9}$$
32/3 - 88*cos(3/8)/3 + 448*sin(3/8)/9
Numerical answer [src]
1.60400898285537
1.60400898285537

    Use the examples entering the upper and lower limits of integration.