Mister Exam

Integral of 7x-14 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  5              
  /              
 |               
 |  (7*x - 14) dx
 |               
/                
2                
25(7x14)dx\int\limits_{2}^{5} \left(7 x - 14\right)\, dx
Integral(7*x - 14, (x, 2, 5))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      7xdx=7xdx\int 7 x\, dx = 7 \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: 7x22\frac{7 x^{2}}{2}

    1. The integral of a constant is the constant times the variable of integration:

      (14)dx=14x\int \left(-14\right)\, dx = - 14 x

    The result is: 7x2214x\frac{7 x^{2}}{2} - 14 x

  2. Now simplify:

    7x(x4)2\frac{7 x \left(x - 4\right)}{2}

  3. Add the constant of integration:

    7x(x4)2+constant\frac{7 x \left(x - 4\right)}{2}+ \mathrm{constant}


The answer is:

7x(x4)2+constant\frac{7 x \left(x - 4\right)}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                              2
 |                            7*x 
 | (7*x - 14) dx = C - 14*x + ----
 |                             2  
/                                 
(7x14)dx=C+7x2214x\int \left(7 x - 14\right)\, dx = C + \frac{7 x^{2}}{2} - 14 x
The graph
2.005.002.252.502.753.003.253.503.754.004.254.504.75-5050
The answer [src]
63/2
632\frac{63}{2}
=
=
63/2
632\frac{63}{2}
63/2
Numerical answer [src]
31.5
31.5

    Use the examples entering the upper and lower limits of integration.