Mister Exam

Other calculators


(6x-7)/(x^2+4x+13)

Integral of (6x-7)/(x^2+4x+13) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |     6*x - 7      
 |  ------------- dx
 |   2              
 |  x  + 4*x + 13   
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \frac{6 x - 7}{\left(x^{2} + 4 x\right) + 13}\, dx$$
Integral((6*x - 7)/(x^2 + 4*x + 13), (x, 0, 1))
Detail solution
We have the integral:
  /                
 |                 
 |    6*x - 7      
 | ------------- dx
 |  2              
 | x  + 4*x + 13   
 |                 
/                  
Rewrite the integrand
                                      /-19 \    
                                      |----|    
   6*x - 7           2*x + 4          \ 9  /    
------------- = 3*------------- + --------------
 2                 2                       2    
x  + 4*x + 13     x  + 4*x + 13   /  x   2\     
                                  |- - - -|  + 1
                                  \  3   3/     
or
  /                  
 |                   
 |    6*x - 7        
 | ------------- dx  
 |  2               =
 | x  + 4*x + 13     
 |                   
/                    
  
                             /                 
                            |                  
                            |       1          
                        19* | -------------- dx
                            |          2       
                            | /  x   2\        
                            | |- - - -|  + 1   
    /                       | \  3   3/        
   |                        |                  
   |    2*x + 4            /                   
3* | ------------- dx - -----------------------
   |  2                            9           
   | x  + 4*x + 13                             
   |                                           
  /                                            
In the integral
    /                
   |                 
   |    2*x + 4      
3* | ------------- dx
   |  2              
   | x  + 4*x + 13   
   |                 
  /                  
do replacement
     2      
u = x  + 4*x
then
the integral =
    /                         
   |                          
   |   1                      
3* | ------ du = 3*log(13 + u)
   | 13 + u                   
   |                          
  /                           
do backward replacement
    /                                       
   |                                        
   |    2*x + 4              /      2      \
3* | ------------- dx = 3*log\13 + x  + 4*x/
   |  2                                     
   | x  + 4*x + 13                          
   |                                        
  /                                         
In the integral
      /                 
     |                  
     |       1          
-19* | -------------- dx
     |          2       
     | /  x   2\        
     | |- - - -|  + 1   
     | \  3   3/        
     |                  
    /                   
------------------------
           9            
do replacement
      2   x
v = - - - -
      3   3
then
the integral =
      /                       
     |                        
     |   1                    
-19* | ------ dv              
     |      2                 
     | 1 + v                  
     |                        
    /              -19*atan(v)
---------------- = -----------
       9                9     
do backward replacement
      /                                   
     |                                    
     |       1                            
-19* | -------------- dx                  
     |          2                         
     | /  x   2\                          
     | |- - - -|  + 1                     
     | \  3   3/                   /2   x\
     |                     -19*atan|- + -|
    /                              \3   3/
------------------------ = ---------------
           9                      3       
Solution is:
                                  /2   x\
                           19*atan|- + -|
         /      2      \          \3   3/
C + 3*log\13 + x  + 4*x/ - --------------
                                 3       
The answer (Indefinite) [src]
  /                                                     /2   x\
 |                                               19*atan|- + -|
 |    6*x - 7                  /      2      \          \3   3/
 | ------------- dx = C + 3*log\13 + x  + 4*x/ - --------------
 |  2                                                  3       
 | x  + 4*x + 13                                               
 |                                                             
/                                                              
$$\int \frac{6 x - 7}{\left(x^{2} + 4 x\right) + 13}\, dx = C + 3 \log{\left(x^{2} + 4 x + 13 \right)} - \frac{19 \operatorname{atan}{\left(\frac{x}{3} + \frac{2}{3} \right)}}{3}$$
The graph
The answer [src]
                         19*pi   19*atan(2/3)
-3*log(13) + 3*log(18) - ----- + ------------
                           12         3      
$$- 3 \log{\left(13 \right)} - \frac{19 \pi}{12} + \frac{19 \operatorname{atan}{\left(\frac{2}{3} \right)}}{3} + 3 \log{\left(18 \right)}$$
=
=
                         19*pi   19*atan(2/3)
-3*log(13) + 3*log(18) - ----- + ------------
                           12         3      
$$- 3 \log{\left(13 \right)} - \frac{19 \pi}{12} + \frac{19 \operatorname{atan}{\left(\frac{2}{3} \right)}}{3} + 3 \log{\left(18 \right)}$$
-3*log(13) + 3*log(18) - 19*pi/12 + 19*atan(2/3)/3
Numerical answer [src]
-0.273904677745361
-0.273904677745361
The graph
Integral of (6x-7)/(x^2+4x+13) dx

    Use the examples entering the upper and lower limits of integration.