Mister Exam

Other calculators


6x³+x²-2x+1/2x-1

Integral of 6x³+x²-2x+1/2x-1 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                             
  /                             
 |                              
 |  /   3    2         x    \   
 |  |6*x  + x  - 2*x + - - 1| dx
 |  \                  2    /   
 |                              
/                               
0                               
01((x2+(2x+(6x3+x2)))1)dx\int\limits_{0}^{1} \left(\left(\frac{x}{2} + \left(- 2 x + \left(6 x^{3} + x^{2}\right)\right)\right) - 1\right)\, dx
Integral(6*x^3 + x^2 - 2*x + x/2 - 1, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        x2dx=xdx2\int \frac{x}{2}\, dx = \frac{\int x\, dx}{2}

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        So, the result is: x24\frac{x^{2}}{4}

      1. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          (2x)dx=2xdx\int \left(- 2 x\right)\, dx = - 2 \int x\, dx

          1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

            xdx=x22\int x\, dx = \frac{x^{2}}{2}

          So, the result is: x2- x^{2}

        1. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            6x3dx=6x3dx\int 6 x^{3}\, dx = 6 \int x^{3}\, dx

            1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

              x3dx=x44\int x^{3}\, dx = \frac{x^{4}}{4}

            So, the result is: 3x42\frac{3 x^{4}}{2}

          1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

            x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

          The result is: 3x42+x33\frac{3 x^{4}}{2} + \frac{x^{3}}{3}

        The result is: 3x42+x33x2\frac{3 x^{4}}{2} + \frac{x^{3}}{3} - x^{2}

      The result is: 3x42+x333x24\frac{3 x^{4}}{2} + \frac{x^{3}}{3} - \frac{3 x^{2}}{4}

    1. The integral of a constant is the constant times the variable of integration:

      (1)dx=x\int \left(-1\right)\, dx = - x

    The result is: 3x42+x333x24x\frac{3 x^{4}}{2} + \frac{x^{3}}{3} - \frac{3 x^{2}}{4} - x

  2. Now simplify:

    x(18x3+4x29x12)12\frac{x \left(18 x^{3} + 4 x^{2} - 9 x - 12\right)}{12}

  3. Add the constant of integration:

    x(18x3+4x29x12)12+constant\frac{x \left(18 x^{3} + 4 x^{2} - 9 x - 12\right)}{12}+ \mathrm{constant}


The answer is:

x(18x3+4x29x12)12+constant\frac{x \left(18 x^{3} + 4 x^{2} - 9 x - 12\right)}{12}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                       
 |                                           2    3      4
 | /   3    2         x    \              3*x    x    3*x 
 | |6*x  + x  - 2*x + - - 1| dx = C - x - ---- + -- + ----
 | \                  2    /               4     3     2  
 |                                                        
/                                                         
((x2+(2x+(6x3+x2)))1)dx=C+3x42+x333x24x\int \left(\left(\frac{x}{2} + \left(- 2 x + \left(6 x^{3} + x^{2}\right)\right)\right) - 1\right)\, dx = C + \frac{3 x^{4}}{2} + \frac{x^{3}}{3} - \frac{3 x^{2}}{4} - x
The graph
0.001.000.100.200.300.400.500.600.700.800.905-5
The answer [src]
1/12
112\frac{1}{12}
=
=
1/12
112\frac{1}{12}
1/12
Numerical answer [src]
0.0833333333333333
0.0833333333333333
The graph
Integral of 6x³+x²-2x+1/2x-1 dx

    Use the examples entering the upper and lower limits of integration.