Mister Exam

Other calculators

Integral of 6cos(4x)-3sin(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                           
  /                           
 |                            
 |  (6*cos(4*x) - 3*sin(x)) dx
 |                            
/                             
0                             
$$\int\limits_{0}^{1} \left(- 3 \sin{\left(x \right)} + 6 \cos{\left(4 x \right)}\right)\, dx$$
Integral(6*cos(4*x) - 3*sin(x), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of sine is negative cosine:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of cosine is sine:

          So, the result is:

        Now substitute back in:

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                      
 |                                             3*sin(4*x)
 | (6*cos(4*x) - 3*sin(x)) dx = C + 3*cos(x) + ----------
 |                                                 2     
/                                                        
$$\int \left(- 3 \sin{\left(x \right)} + 6 \cos{\left(4 x \right)}\right)\, dx = C + \frac{3 \sin{\left(4 x \right)}}{2} + 3 \cos{\left(x \right)}$$
The graph
The answer [src]
                3*sin(4)
-3 + 3*cos(1) + --------
                   2    
$$-3 + \frac{3 \sin{\left(4 \right)}}{2} + 3 \cos{\left(1 \right)}$$
=
=
                3*sin(4)
-3 + 3*cos(1) + --------
                   2    
$$-3 + \frac{3 \sin{\left(4 \right)}}{2} + 3 \cos{\left(1 \right)}$$
-3 + 3*cos(1) + 3*sin(4)/2
Numerical answer [src]
-2.51429682535747
-2.51429682535747

    Use the examples entering the upper and lower limits of integration.