Mister Exam

Other calculators


(5x-1)/(2x^2-x-7)

Integral of (5x-1)/(2x^2-x-7) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |    5*x - 1      
 |  ------------ dx
 |     2           
 |  2*x  - x - 7   
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{5 x - 1}{2 x^{2} - x - 7}\, dx$$
Integral((5*x - 1*1)/(2*x^2 - x - 1*7), (x, 0, 1))
The answer (Indefinite) [src]
                                                       /     /            ____\      /            ____\\
  /                                               ____ |     |  1       \/ 57 |      |  1       \/ 57 ||
 |                            /            2\   \/ 57 *|- log|- - + x + ------| + log|- - + x - ------||
 |   5*x - 1             5*log\-7 - x + 2*x /          \     \  4         4   /      \  4         4   //
 | ------------ dx = C + -------------------- + --------------------------------------------------------
 |    2                           4                                       228                           
 | 2*x  - x - 7                                                                                         
 |                                                                                                      
/                                                                                                       
$${{\log \left({{4\,x-\sqrt{57}-1}\over{4\,x+\sqrt{57}-1}}\right) }\over{4\,\sqrt{57}}}+{{5\,\log \left(2\,x^2-x-7\right)}\over{4}}$$
The graph
The answer [src]
/      ____\    /      ____\   /      ____\ /          /        ____\\   /      ____\    /        ____\   /      ____\ /          /      ____\\
|5   \/ 57 |    |3   \/ 57 |   |5   \/ 57 | |          |  3   \/ 57 ||   |5   \/ 57 |    |  1   \/ 57 |   |5   \/ 57 | |          |1   \/ 57 ||
|- - ------|*log|- + ------| + |- + ------|*|pi*I + log|- - + ------|| - |- - ------|*log|- - + ------| - |- + ------|*|pi*I + log|- + ------||
\4    228  /    \4     4   /   \4    228  / \          \  4     4   //   \4    228  /    \  4     4   /   \4    228  / \          \4     4   //
$$-{{\log \left({{\sqrt{57}+29}\over{28}}\right)}\over{4\,\sqrt{57}}} +{{\log \left(-{{\sqrt{57}-11}\over{8}}\right)}\over{4\,\sqrt{57}}}- {{5\,\log 7}\over{4}}+{{5\,\log 6}\over{4}}$$
=
=
/      ____\    /      ____\   /      ____\ /          /        ____\\   /      ____\    /        ____\   /      ____\ /          /      ____\\
|5   \/ 57 |    |3   \/ 57 |   |5   \/ 57 | |          |  3   \/ 57 ||   |5   \/ 57 |    |  1   \/ 57 |   |5   \/ 57 | |          |1   \/ 57 ||
|- - ------|*log|- + ------| + |- + ------|*|pi*I + log|- - + ------|| - |- - ------|*log|- - + ------| - |- + ------|*|pi*I + log|- + ------||
\4    228  /    \4     4   /   \4    228  / \          \  4     4   //   \4    228  /    \  4     4   /   \4    228  / \          \4     4   //
$$- \left(- \frac{\sqrt{57}}{228} + \frac{5}{4}\right) \log{\left(- \frac{1}{4} + \frac{\sqrt{57}}{4} \right)} + \left(- \frac{\sqrt{57}}{228} + \frac{5}{4}\right) \log{\left(\frac{3}{4} + \frac{\sqrt{57}}{4} \right)} - \left(\frac{\sqrt{57}}{228} + \frac{5}{4}\right) \left(\log{\left(\frac{1}{4} + \frac{\sqrt{57}}{4} \right)} + i \pi\right) + \left(\frac{\sqrt{57}}{228} + \frac{5}{4}\right) \left(\log{\left(- \frac{3}{4} + \frac{\sqrt{57}}{4} \right)} + i \pi\right)$$
Numerical answer [src]
-0.229361056904414
-0.229361056904414
The graph
Integral of (5x-1)/(2x^2-x-7) dx

    Use the examples entering the upper and lower limits of integration.