Mister Exam

Integral of (5x-6x²)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |  /         2\   
 |  \5*x - 6*x / dx
 |                 
/                  
3                  
31(6x2+5x)dx\int\limits_{3}^{1} \left(- 6 x^{2} + 5 x\right)\, dx
Integral(5*x - 6*x^2, (x, 3, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      (6x2)dx=6x2dx\int \left(- 6 x^{2}\right)\, dx = - 6 \int x^{2}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

      So, the result is: 2x3- 2 x^{3}

    1. The integral of a constant times a function is the constant times the integral of the function:

      5xdx=5xdx\int 5 x\, dx = 5 \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: 5x22\frac{5 x^{2}}{2}

    The result is: 2x3+5x22- 2 x^{3} + \frac{5 x^{2}}{2}

  2. Now simplify:

    x2(54x)2\frac{x^{2} \left(5 - 4 x\right)}{2}

  3. Add the constant of integration:

    x2(54x)2+constant\frac{x^{2} \left(5 - 4 x\right)}{2}+ \mathrm{constant}


The answer is:

x2(54x)2+constant\frac{x^{2} \left(5 - 4 x\right)}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                 
 |                                 2
 | /         2\             3   5*x 
 | \5*x - 6*x / dx = C - 2*x  + ----
 |                               2  
/                                   
(6x2+5x)dx=C2x3+5x22\int \left(- 6 x^{2} + 5 x\right)\, dx = C - 2 x^{3} + \frac{5 x^{2}}{2}
The graph
1.03.01.21.41.61.82.02.22.42.62.8-5050
The answer [src]
32
3232
=
=
32
3232
32
Numerical answer [src]
32.0
32.0

    Use the examples entering the upper and lower limits of integration.