Mister Exam

Integral of 5x³dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |     3     
 |  5*x *1 dx
 |           
/            
0            
015x31dx\int\limits_{0}^{1} 5 x^{3} \cdot 1\, dx
Integral(5*x^3*1, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    5x31dx=5x3dx\int 5 x^{3} \cdot 1\, dx = 5 \int x^{3}\, dx

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      x3dx=x44\int x^{3}\, dx = \frac{x^{4}}{4}

    So, the result is: 5x44\frac{5 x^{4}}{4}

  2. Add the constant of integration:

    5x44+constant\frac{5 x^{4}}{4}+ \mathrm{constant}


The answer is:

5x44+constant\frac{5 x^{4}}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                    
 |                    4
 |    3            5*x 
 | 5*x *1 dx = C + ----
 |                  4  
/                      
5x44{{5\,x^4}\over{4}}
The graph
0.001.000.100.200.300.400.500.600.700.800.90010
The answer [src]
5/4
54{{5}\over{4}}
=
=
5/4
54\frac{5}{4}
Numerical answer [src]
1.25
1.25
The graph
Integral of 5x³dx dx

    Use the examples entering the upper and lower limits of integration.