Mister Exam

Other calculators

Integral of (5cos(2x)+3sin(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                           
  /                           
 |                            
 |  (5*cos(2*x) + 3*sin(x)) dx
 |                            
/                             
0                             
$$\int\limits_{0}^{1} \left(3 \sin{\left(x \right)} + 5 \cos{\left(2 x \right)}\right)\, dx$$
Integral(5*cos(2*x) + 3*sin(x), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of sine is negative cosine:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of cosine is sine:

          So, the result is:

        Now substitute back in:

      So, the result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                      
 |                                             5*sin(2*x)
 | (5*cos(2*x) + 3*sin(x)) dx = C - 3*cos(x) + ----------
 |                                                 2     
/                                                        
$$\int \left(3 \sin{\left(x \right)} + 5 \cos{\left(2 x \right)}\right)\, dx = C + \frac{5 \sin{\left(2 x \right)}}{2} - 3 \cos{\left(x \right)}$$
The graph
The answer [src]
               5*sin(2)
3 - 3*cos(1) + --------
                  2    
$$- 3 \cos{\left(1 \right)} + \frac{5 \sin{\left(2 \right)}}{2} + 3$$
=
=
               5*sin(2)
3 - 3*cos(1) + --------
                  2    
$$- 3 \cos{\left(1 \right)} + \frac{5 \sin{\left(2 \right)}}{2} + 3$$
3 - 3*cos(1) + 5*sin(2)/2
Numerical answer [src]
3.65233664945979
3.65233664945979

    Use the examples entering the upper and lower limits of integration.