1 / | | (5*cos(2*x) + 3*sin(x)) dx | / 0
Integral(5*cos(2*x) + 3*sin(x), (x, 0, 1))
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
The integral of sine is negative cosine:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
So, the result is:
The result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | 5*sin(2*x) | (5*cos(2*x) + 3*sin(x)) dx = C - 3*cos(x) + ---------- | 2 /
5*sin(2)
3 - 3*cos(1) + --------
2
=
5*sin(2)
3 - 3*cos(1) + --------
2
3 - 3*cos(1) + 5*sin(2)/2
Use the examples entering the upper and lower limits of integration.