Mister Exam

Other calculators

Integral of 4x^2-2x+5 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |  /   2          \   
 |  \4*x  - 2*x + 5/ dx
 |                     
/                      
0                      
$$\int\limits_{0}^{1} \left(\left(4 x^{2} - 2 x\right) + 5\right)\, dx$$
Integral(4*x^2 - 2*x + 5, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      The result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                         
 |                                         3
 | /   2          \           2         4*x 
 | \4*x  - 2*x + 5/ dx = C - x  + 5*x + ----
 |                                       3  
/                                           
$$\int \left(\left(4 x^{2} - 2 x\right) + 5\right)\, dx = C + \frac{4 x^{3}}{3} - x^{2} + 5 x$$
The graph
The answer [src]
16/3
$$\frac{16}{3}$$
=
=
16/3
$$\frac{16}{3}$$
16/3
Numerical answer [src]
5.33333333333333
5.33333333333333

    Use the examples entering the upper and lower limits of integration.