Mister Exam

Integral of 4x+2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |  (4*x + 2) dx
 |              
/               
0               
01(4x+2)dx\int\limits_{0}^{1} \left(4 x + 2\right)\, dx
Integral(4*x + 2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      4xdx=4xdx\int 4 x\, dx = 4 \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: 2x22 x^{2}

    1. The integral of a constant is the constant times the variable of integration:

      2dx=2x\int 2\, dx = 2 x

    The result is: 2x2+2x2 x^{2} + 2 x

  2. Now simplify:

    2x(x+1)2 x \left(x + 1\right)

  3. Add the constant of integration:

    2x(x+1)+constant2 x \left(x + 1\right)+ \mathrm{constant}


The answer is:

2x(x+1)+constant2 x \left(x + 1\right)+ \mathrm{constant}

The answer (Indefinite) [src]
  /                             
 |                             2
 | (4*x + 2) dx = C + 2*x + 2*x 
 |                              
/                               
(4x+2)dx=C+2x2+2x\int \left(4 x + 2\right)\, dx = C + 2 x^{2} + 2 x
The graph
0.001.000.100.200.300.400.500.600.700.800.90010
The answer [src]
4
44
=
=
4
44
4
Numerical answer [src]
4.0
4.0
The graph
Integral of 4x+2 dx

    Use the examples entering the upper and lower limits of integration.