Mister Exam

Other calculators

Integral of 4x-1/2*sqrt(x-2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  /        _______\   
 |  |      \/ x - 2 |   
 |  |4*x - ---------| dx
 |  \          2    /   
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \left(4 x - \frac{\sqrt{x - 2}}{2}\right)\, dx$$
Integral(4*x - sqrt(x - 2)/2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      So, the result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                            
 |                                             
 | /        _______\                        3/2
 | |      \/ x - 2 |             2   (x - 2)   
 | |4*x - ---------| dx = C + 2*x  - ----------
 | \          2    /                     3     
 |                                             
/                                              
$$\int \left(4 x - \frac{\sqrt{x - 2}}{2}\right)\, dx = C + 2 x^{2} - \frac{\left(x - 2\right)^{\frac{3}{2}}}{3}$$
The graph
The answer [src]
              ___
    I   2*I*\/ 2 
2 + - - ---------
    3       3    
$$2 - \frac{2 \sqrt{2} i}{3} + \frac{i}{3}$$
=
=
              ___
    I   2*I*\/ 2 
2 + - - ---------
    3       3    
$$2 - \frac{2 \sqrt{2} i}{3} + \frac{i}{3}$$
2 + i/3 - 2*i*sqrt(2)/3
Numerical answer [src]
(2.0 - 0.60947570824873j)
(2.0 - 0.60947570824873j)

    Use the examples entering the upper and lower limits of integration.