Mister Exam

Integral of (4x³+x)√4x²+1dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                             
  /                             
 |                              
 |  /                  2    \   
 |  |/   3    \   _____     |   
 |  \\4*x  + x/*\/ 4*x   + 1/ dx
 |                              
/                               
0                               
$$\int\limits_{0}^{1} \left(\left(4 x^{3} + x\right) \left(\sqrt{4 x}\right)^{2} + 1\right)\, dx$$
Integral((4*x^3 + x)*(sqrt(4*x))^2 + 1, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      The result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                   
 |                                                    
 | /                  2    \                 3       5
 | |/   3    \   _____     |              4*x    16*x 
 | \\4*x  + x/*\/ 4*x   + 1/ dx = C + x + ---- + -----
 |                                         3       5  
/                                                     
$$\int \left(\left(4 x^{3} + x\right) \left(\sqrt{4 x}\right)^{2} + 1\right)\, dx = C + \frac{16 x^{5}}{5} + \frac{4 x^{3}}{3} + x$$
The graph
The answer [src]
83
--
15
$$\frac{83}{15}$$
=
=
83
--
15
$$\frac{83}{15}$$
83/15
Numerical answer [src]
5.53333333333333
5.53333333333333
The graph
Integral of (4x³+x)√4x²+1dx dx

    Use the examples entering the upper and lower limits of integration.