Mister Exam

Other calculators

Integral of (4x³+3x²+2x+1)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                           
  /                           
 |                            
 |  /   3      2          \   
 |  \4*x  + 3*x  + 2*x + 1/ dx
 |                            
/                             
0                             
01((2x+(4x3+3x2))+1)dx\int\limits_{0}^{1} \left(\left(2 x + \left(4 x^{3} + 3 x^{2}\right)\right) + 1\right)\, dx
Integral(4*x^3 + 3*x^2 + 2*x + 1, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        2xdx=2xdx\int 2 x\, dx = 2 \int x\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        So, the result is: x2x^{2}

      1. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          4x3dx=4x3dx\int 4 x^{3}\, dx = 4 \int x^{3}\, dx

          1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

            x3dx=x44\int x^{3}\, dx = \frac{x^{4}}{4}

          So, the result is: x4x^{4}

        1. The integral of a constant times a function is the constant times the integral of the function:

          3x2dx=3x2dx\int 3 x^{2}\, dx = 3 \int x^{2}\, dx

          1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

            x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

          So, the result is: x3x^{3}

        The result is: x4+x3x^{4} + x^{3}

      The result is: x4+x3+x2x^{4} + x^{3} + x^{2}

    1. The integral of a constant is the constant times the variable of integration:

      1dx=x\int 1\, dx = x

    The result is: x4+x3+x2+xx^{4} + x^{3} + x^{2} + x

  2. Now simplify:

    x(x3+x2+x+1)x \left(x^{3} + x^{2} + x + 1\right)

  3. Add the constant of integration:

    x(x3+x2+x+1)+constantx \left(x^{3} + x^{2} + x + 1\right)+ \mathrm{constant}


The answer is:

x(x3+x2+x+1)+constantx \left(x^{3} + x^{2} + x + 1\right)+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                 
 |                                                  
 | /   3      2          \               2    3    4
 | \4*x  + 3*x  + 2*x + 1/ dx = C + x + x  + x  + x 
 |                                                  
/                                                   
((2x+(4x3+3x2))+1)dx=C+x4+x3+x2+x\int \left(\left(2 x + \left(4 x^{3} + 3 x^{2}\right)\right) + 1\right)\, dx = C + x^{4} + x^{3} + x^{2} + x
The graph
0.001.000.100.200.300.400.500.600.700.800.90020
The answer [src]
4
44
=
=
4
44
4
Numerical answer [src]
4.0
4.0

    Use the examples entering the upper and lower limits of integration.