Mister Exam

Other calculators


4sinx/(cosx)^3

Integral of 4sinx/(cosx)^3 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |  4*sin(x)   
 |  -------- dx
 |     3       
 |  cos (x)    
 |             
/              
0              
$$\int\limits_{0}^{1} \frac{4 \sin{\left(x \right)}}{\cos^{3}{\left(x \right)}}\, dx$$
Integral(4*sin(x)/(cos(x)^3), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Don't know the steps in finding this integral.

      But the integral is

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                         
 |                          
 | 4*sin(x)             2   
 | -------- dx = C + -------
 |    3                 2   
 | cos (x)           cos (x)
 |                          
/                           
$${{2}\over{\cos ^2x}}$$
The graph
The answer [src]
        2   
-2 + -------
        2   
     cos (1)
$$4\,\left({{1}\over{2\,\cos ^21}}-{{1}\over{2}}\right)$$
=
=
        2   
-2 + -------
        2   
     cos (1)
$$-2 + \frac{2}{\cos^{2}{\left(1 \right)}}$$
Numerical answer [src]
4.85103764162952
4.85103764162952
The graph
Integral of 4sinx/(cosx)^3 dx

    Use the examples entering the upper and lower limits of integration.