Mister Exam

Integral of 4sin^2t dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2*pi            
   /             
  |              
  |       2      
  |  4*sin (t) dt
  |              
 /               
 0               
02π4sin2(t)dt\int\limits_{0}^{2 \pi} 4 \sin^{2}{\left(t \right)}\, dt
Integral(4*sin(t)^2, (t, 0, 2*pi))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    4sin2(t)dt=4sin2(t)dt\int 4 \sin^{2}{\left(t \right)}\, dt = 4 \int \sin^{2}{\left(t \right)}\, dt

    1. Rewrite the integrand:

      sin2(t)=12cos(2t)2\sin^{2}{\left(t \right)} = \frac{1}{2} - \frac{\cos{\left(2 t \right)}}{2}

    2. Integrate term-by-term:

      1. The integral of a constant is the constant times the variable of integration:

        12dt=t2\int \frac{1}{2}\, dt = \frac{t}{2}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (cos(2t)2)dt=cos(2t)dt2\int \left(- \frac{\cos{\left(2 t \right)}}{2}\right)\, dt = - \frac{\int \cos{\left(2 t \right)}\, dt}{2}

        1. Let u=2tu = 2 t.

          Then let du=2dtdu = 2 dt and substitute du2\frac{du}{2}:

          cos(u)2du\int \frac{\cos{\left(u \right)}}{2}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            cos(u)du=cos(u)du2\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

            1. The integral of cosine is sine:

              cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

            So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

          Now substitute uu back in:

          sin(2t)2\frac{\sin{\left(2 t \right)}}{2}

        So, the result is: sin(2t)4- \frac{\sin{\left(2 t \right)}}{4}

      The result is: t2sin(2t)4\frac{t}{2} - \frac{\sin{\left(2 t \right)}}{4}

    So, the result is: 2tsin(2t)2 t - \sin{\left(2 t \right)}

  2. Add the constant of integration:

    2tsin(2t)+constant2 t - \sin{\left(2 t \right)}+ \mathrm{constant}


The answer is:

2tsin(2t)+constant2 t - \sin{\left(2 t \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                 
 |                                  
 |      2                           
 | 4*sin (t) dt = C - sin(2*t) + 2*t
 |                                  
/                                   
4sin2(t)dt=C+2tsin(2t)\int 4 \sin^{2}{\left(t \right)}\, dt = C + 2 t - \sin{\left(2 t \right)}
The graph
0.00.51.01.52.02.53.03.54.04.55.05.56.0020
The answer [src]
4*pi
4π4 \pi
=
=
4*pi
4π4 \pi
4*pi
Numerical answer [src]
12.5663706143592
12.5663706143592

    Use the examples entering the upper and lower limits of integration.