Mister Exam

Other calculators

Integral of (4cos(3x)-5sin(2x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                             
  /                             
 |                              
 |  (4*cos(3*x) - 5*sin(2*x)) dx
 |                              
/                               
0                               
01(5sin(2x)+4cos(3x))dx\int\limits_{0}^{1} \left(- 5 \sin{\left(2 x \right)} + 4 \cos{\left(3 x \right)}\right)\, dx
Integral(4*cos(3*x) - 5*sin(2*x), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      (5sin(2x))dx=5sin(2x)dx\int \left(- 5 \sin{\left(2 x \right)}\right)\, dx = - 5 \int \sin{\left(2 x \right)}\, dx

      1. There are multiple ways to do this integral.

        Method #1

        1. Let u=2xu = 2 x.

          Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

          sin(u)2du\int \frac{\sin{\left(u \right)}}{2}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            sin(u)du=sin(u)du2\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{2}

            1. The integral of sine is negative cosine:

              sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

            So, the result is: cos(u)2- \frac{\cos{\left(u \right)}}{2}

          Now substitute uu back in:

          cos(2x)2- \frac{\cos{\left(2 x \right)}}{2}

        Method #2

        1. The integral of a constant times a function is the constant times the integral of the function:

          2sin(x)cos(x)dx=2sin(x)cos(x)dx\int 2 \sin{\left(x \right)} \cos{\left(x \right)}\, dx = 2 \int \sin{\left(x \right)} \cos{\left(x \right)}\, dx

          1. There are multiple ways to do this integral.

            Method #1

            1. Let u=cos(x)u = \cos{\left(x \right)}.

              Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

              (u)du\int \left(- u\right)\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                udu=udu\int u\, du = - \int u\, du

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  udu=u22\int u\, du = \frac{u^{2}}{2}

                So, the result is: u22- \frac{u^{2}}{2}

              Now substitute uu back in:

              cos2(x)2- \frac{\cos^{2}{\left(x \right)}}{2}

            Method #2

            1. Let u=sin(x)u = \sin{\left(x \right)}.

              Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

              udu\int u\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                udu=u22\int u\, du = \frac{u^{2}}{2}

              Now substitute uu back in:

              sin2(x)2\frac{\sin^{2}{\left(x \right)}}{2}

          So, the result is: cos2(x)- \cos^{2}{\left(x \right)}

      So, the result is: 5cos(2x)2\frac{5 \cos{\left(2 x \right)}}{2}

    1. The integral of a constant times a function is the constant times the integral of the function:

      4cos(3x)dx=4cos(3x)dx\int 4 \cos{\left(3 x \right)}\, dx = 4 \int \cos{\left(3 x \right)}\, dx

      1. Let u=3xu = 3 x.

        Then let du=3dxdu = 3 dx and substitute du3\frac{du}{3}:

        cos(u)3du\int \frac{\cos{\left(u \right)}}{3}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          cos(u)du=cos(u)du3\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{3}

          1. The integral of cosine is sine:

            cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

          So, the result is: sin(u)3\frac{\sin{\left(u \right)}}{3}

        Now substitute uu back in:

        sin(3x)3\frac{\sin{\left(3 x \right)}}{3}

      So, the result is: 4sin(3x)3\frac{4 \sin{\left(3 x \right)}}{3}

    The result is: 4sin(3x)3+5cos(2x)2\frac{4 \sin{\left(3 x \right)}}{3} + \frac{5 \cos{\left(2 x \right)}}{2}

  2. Add the constant of integration:

    4sin(3x)3+5cos(2x)2+constant\frac{4 \sin{\left(3 x \right)}}{3} + \frac{5 \cos{\left(2 x \right)}}{2}+ \mathrm{constant}


The answer is:

4sin(3x)3+5cos(2x)2+constant\frac{4 \sin{\left(3 x \right)}}{3} + \frac{5 \cos{\left(2 x \right)}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                          
 |                                    4*sin(3*x)   5*cos(2*x)
 | (4*cos(3*x) - 5*sin(2*x)) dx = C + ---------- + ----------
 |                                        3            2     
/                                                            
(5sin(2x)+4cos(3x))dx=C+4sin(3x)3+5cos(2x)2\int \left(- 5 \sin{\left(2 x \right)} + 4 \cos{\left(3 x \right)}\right)\, dx = C + \frac{4 \sin{\left(3 x \right)}}{3} + \frac{5 \cos{\left(2 x \right)}}{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-1010
The answer [src]
  5   4*sin(3)   5*cos(2)
- - + -------- + --------
  2      3          2    
52+5cos(2)2+4sin(3)3- \frac{5}{2} + \frac{5 \cos{\left(2 \right)}}{2} + \frac{4 \sin{\left(3 \right)}}{3}
=
=
  5   4*sin(3)   5*cos(2)
- - + -------- + --------
  2      3          2    
52+5cos(2)2+4sin(3)3- \frac{5}{2} + \frac{5 \cos{\left(2 \right)}}{2} + \frac{4 \sin{\left(3 \right)}}{3}
-5/2 + 4*sin(3)/3 + 5*cos(2)/2
Numerical answer [src]
-3.35220708062137
-3.35220708062137

    Use the examples entering the upper and lower limits of integration.