Mister Exam

Other calculators


(3x^5-10x^4+6x^2-4x)dx

Integral of (3x^5-10x^4+6x^2-4x)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                               
  /                               
 |                                
 |  /   5       4      2      \   
 |  \3*x  - 10*x  + 6*x  - 4*x/ dx
 |                                
/                                 
0                                 
$$\int\limits_{0}^{1} \left(- 4 x + \left(6 x^{2} + \left(3 x^{5} - 10 x^{4}\right)\right)\right)\, dx$$
Integral(3*x^5 - 10*x^4 + 6*x^2 - 4*x, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      1. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        The result is:

      The result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                            
 |                                       6                     
 | /   5       4      2      \          x       2      5      3
 | \3*x  - 10*x  + 6*x  - 4*x/ dx = C + -- - 2*x  - 2*x  + 2*x 
 |                                      2                      
/                                                              
$$\int \left(- 4 x + \left(6 x^{2} + \left(3 x^{5} - 10 x^{4}\right)\right)\right)\, dx = C + \frac{x^{6}}{2} - 2 x^{5} + 2 x^{3} - 2 x^{2}$$
The graph
The answer [src]
-3/2
$$- \frac{3}{2}$$
=
=
-3/2
$$- \frac{3}{2}$$
-3/2
Numerical answer [src]
-1.5
-1.5
The graph
Integral of (3x^5-10x^4+6x^2-4x)dx dx

    Use the examples entering the upper and lower limits of integration.