Mister Exam

Other calculators

Integral of (3x+2)*ln(x)^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |               2      
 |  (3*x + 2)*log (x) dx
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \left(3 x + 2\right) \log{\left(x \right)}^{2}\, dx$$
Integral((3*x + 2)*log(x)^2, (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Use integration by parts:

            Let and let .

            Then .

            To find :

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                1. The integral of the exponential function is itself.

                So, the result is:

              Now substitute back in:

            Now evaluate the sub-integral.

          2. Use integration by parts:

            Let and let .

            Then .

            To find :

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                1. The integral of the exponential function is itself.

                So, the result is:

              Now substitute back in:

            Now evaluate the sub-integral.

          3. The integral of a constant times a function is the constant times the integral of the function:

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                1. The integral of the exponential function is itself.

                So, the result is:

              Now substitute back in:

            So, the result is:

          So, the result is:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Use integration by parts:

            Let and let .

            Then .

            To find :

            1. The integral of the exponential function is itself.

            Now evaluate the sub-integral.

          2. Use integration by parts:

            Let and let .

            Then .

            To find :

            1. The integral of the exponential function is itself.

            Now evaluate the sub-integral.

          3. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of the exponential function is itself.

            So, the result is:

          So, the result is:

        The result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. Use integration by parts:

            Let and let .

            Then .

            To find :

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                1. The integral of the exponential function is itself.

                So, the result is:

              Now substitute back in:

            Now evaluate the sub-integral.

          2. Use integration by parts:

            Let and let .

            Then .

            To find :

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                1. The integral of the exponential function is itself.

                So, the result is:

              Now substitute back in:

            Now evaluate the sub-integral.

          3. The integral of a constant times a function is the constant times the integral of the function:

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                1. The integral of the exponential function is itself.

                So, the result is:

              Now substitute back in:

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. Use integration by parts:

            Let and let .

            Then .

            To find :

            1. The integral of the exponential function is itself.

            Now evaluate the sub-integral.

          2. Use integration by parts:

            Let and let .

            Then .

            To find :

            1. The integral of the exponential function is itself.

            Now evaluate the sub-integral.

          3. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of the exponential function is itself.

            So, the result is:

          Now substitute back in:

        So, the result is:

      The result is:

    Method #3

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. Use integration by parts:

            Let and let .

            Then .

            To find :

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                1. The integral of the exponential function is itself.

                So, the result is:

              Now substitute back in:

            Now evaluate the sub-integral.

          2. Use integration by parts:

            Let and let .

            Then .

            To find :

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                1. The integral of the exponential function is itself.

                So, the result is:

              Now substitute back in:

            Now evaluate the sub-integral.

          3. The integral of a constant times a function is the constant times the integral of the function:

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                1. The integral of the exponential function is itself.

                So, the result is:

              Now substitute back in:

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. Use integration by parts:

            Let and let .

            Then .

            To find :

            1. The integral of the exponential function is itself.

            Now evaluate the sub-integral.

          2. Use integration by parts:

            Let and let .

            Then .

            To find :

            1. The integral of the exponential function is itself.

            Now evaluate the sub-integral.

          3. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of the exponential function is itself.

            So, the result is:

          Now substitute back in:

        So, the result is:

      The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                                             
 |                                     2                                 2             2    2   
 |              2                   3*x                        2      3*x *log(x)   3*x *log (x)
 | (3*x + 2)*log (x) dx = C + 4*x + ---- - 4*x*log(x) + 2*x*log (x) - ----------- + ------------
 |                                   4                                     2             2      
/                                                                                               
$$\int \left(3 x + 2\right) \log{\left(x \right)}^{2}\, dx = C + \frac{3 x^{2} \log{\left(x \right)}^{2}}{2} - \frac{3 x^{2} \log{\left(x \right)}}{2} + \frac{3 x^{2}}{4} + 2 x \log{\left(x \right)}^{2} - 4 x \log{\left(x \right)} + 4 x$$
The graph
The answer [src]
19/4
$$\frac{19}{4}$$
=
=
19/4
$$\frac{19}{4}$$
19/4
Numerical answer [src]
4.75
4.75

    Use the examples entering the upper and lower limits of integration.