Mister Exam

Other calculators

Integral of (3x+4)e^(3x)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  f                    
  /                    
 |                     
 |             3*x     
 |  (3*x + 4)*e   *1 dx
 |                     
/                      
1                      
$$\int\limits_{1}^{f} \left(3 x + 4\right) e^{3 x} 1\, dx$$
Integral((3*x + 4)*E^(3*x)*1, (x, 1, f))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Use integration by parts:

            Let and let .

            Then .

            To find :

            1. The integral of the exponential function is itself.

            Now evaluate the sub-integral.

          2. The integral of the exponential function is itself.

          So, the result is:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of the exponential function is itself.

          So, the result is:

        The result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. There are multiple ways to do this integral.

            Method #1

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                1. The integral of the exponential function is itself.

                So, the result is:

              Now substitute back in:

            Method #2

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                1. The integral of a constant is the constant times the variable of integration:

                So, the result is:

              Now substitute back in:

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of the exponential function is itself.

              So, the result is:

            Now substitute back in:

          So, the result is:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of the exponential function is itself.

            So, the result is:

          Now substitute back in:

        So, the result is:

      The result is:

    Method #3

    1. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of the exponential function is itself.

          So, the result is:

        Now substitute back in:

      Now evaluate the sub-integral.

    2. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of the exponential function is itself.

        So, the result is:

      Now substitute back in:

    Method #4

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of the exponential function is itself.

              So, the result is:

            Now substitute back in:

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of the exponential function is itself.

              So, the result is:

            Now substitute back in:

          So, the result is:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of the exponential function is itself.

            So, the result is:

          Now substitute back in:

        So, the result is:

      The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                       
 |                                        
 |            3*x               3*x    3*x
 | (3*x + 4)*e   *1 dx = C + x*e    + e   
 |                                        
/                                         
$${{\left(3\,x-1\right)\,e^{3\,x}}\over{3}}+{{4\,e^{3\,x}}\over{3}}$$
The answer [src]
     3            3*f
- 2*e  + (1 + f)*e   
$$\left(f+1\right)\,e^{3\,f}-2\,e^3$$
=
=
     3            3*f
- 2*e  + (1 + f)*e   
$$\left(f + 1\right) e^{3 f} - 2 e^{3}$$

    Use the examples entering the upper and lower limits of integration.