Mister Exam

Other calculators


(3x-17)/(x^2-6x+10)

Integral of (3x-17)/(x^2-6x+10) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  3                 
  /                 
 |                  
 |     3*x - 17     
 |  ------------- dx
 |   2              
 |  x  - 6*x + 10   
 |                  
/                   
2                   
$$\int\limits_{2}^{3} \frac{3 x - 17}{x^{2} - 6 x + 10}\, dx$$
Integral((3*x - 1*17)/(x^2 - 6*x + 10), (x, 2, 3))
Detail solution
We have the integral:
  /                  
 |                   
 |      3*x - 17     
 | 1*------------- dx
 |    2              
 |   x  - 6*x + 10   
 |                   
/                    
Rewrite the integrand
                     1*2*x - 6                   
                3*---------------       /-8 \    
                     2                  |---|    
   3*x - 17       1*x  - 6*x + 10       \ 1 /    
------------- = ----------------- + -------------
 2                      2                   2    
x  - 6*x + 10                       (-x + 3)  + 1
or
  /                    
 |                     
 |      3*x - 17       
 | 1*------------- dx  
 |    2               =
 |   x  - 6*x + 10     
 |                     
/                      
  
                              /                  
                             |                   
                             |    1*2*x - 6      
                          3* | --------------- dx
                             |    2              
      /                      | 1*x  - 6*x + 10   
     |                       |                   
     |       1              /                    
- 8* | ------------- dx + -----------------------
     |         2                     2           
     | (-x + 3)  + 1                             
     |                                           
    /                                            
In the integral
    /                  
   |                   
   |    1*2*x - 6      
3* | --------------- dx
   |    2              
   | 1*x  - 6*x + 10   
   |                   
  /                    
-----------------------
           2           
do replacement
     2      
u = x  - 6*x
then
the integral =
    /                         
   |                          
   |   1                      
3* | ------ du                
   | 10 + u                   
   |                          
  /              3*log(10 + u)
-------------- = -------------
      2                2      
do backward replacement
    /                                         
   |                                          
   |    1*2*x - 6                             
3* | --------------- dx                       
   |    2                                     
   | 1*x  - 6*x + 10                          
   |                           /      2      \
  /                       3*log\10 + x  - 6*x/
----------------------- = --------------------
           2                       2          
In the integral
     /                
    |                 
    |       1         
-8* | ------------- dx
    |         2       
    | (-x + 3)  + 1   
    |                 
   /                  
do replacement
v = 3 - x
then
the integral =
     /                      
    |                       
    |   1                   
-8* | ------ dv = -8*atan(v)
    |      2                
    | 1 + v                 
    |                       
   /                        
do backward replacement
     /                                  
    |                                   
    |       1                           
-8* | ------------- dx = -8*atan(-3 + x)
    |         2                         
    | (-x + 3)  + 1                     
    |                                   
   /                                    
Solution is:
                          /      2      \
                     3*log\10 + x  - 6*x/
C - 8*atan(-3 + x) + --------------------
                              2          
The answer (Indefinite) [src]
  /                                                            
 |                                              /      2      \
 |    3*x - 17                             3*log\10 + x  - 6*x/
 | ------------- dx = C - 8*atan(-3 + x) + --------------------
 |  2                                               2          
 | x  - 6*x + 10                                               
 |                                                             
/                                                              
$${{3\,\log \left(x^2-6\,x+10\right)}\over{2}}-8\,\arctan \left({{2\, x-6}\over{2}}\right)$$
The graph
The answer [src]
        3*log(2)
-2*pi - --------
           2    
$$-{{3\,\log 2}\over{2}}-2\,\pi$$
=
=
        3*log(2)
-2*pi - --------
           2    
$$- 2 \pi - \frac{3 \log{\left(2 \right)}}{2}$$
Numerical answer [src]
-7.3229060780195
-7.3229060780195
The graph
Integral of (3x-17)/(x^2-6x+10) dx

    Use the examples entering the upper and lower limits of integration.