1 / | | 3*x - 7 | ----------------- dx | ______________ | / 2 | \/ x - 5*x + 1 | / 0
Integral((3*x - 7)/sqrt(x^2 - 5*x + 1), (x, 0, 1))
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Don't know the steps in finding this integral.
But the integral is
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Don't know the steps in finding this integral.
But the integral is
So, the result is:
The result is:
Now simplify:
Add the constant of integration:
The answer is:
/ / / | | | | 3*x - 7 | 1 | x | ----------------- dx = C - 7* | ----------------- dx + 3* | ----------------- dx | ______________ | ______________ | ______________ | / 2 | / 2 | / 2 | \/ x - 5*x + 1 | \/ x - 5*x + 1 | \/ 1 + x - 5*x | | | / / /
1 / | | -7 + 3*x | ----------------- dx | ______________ | / 2 | \/ 1 + x - 5*x | / 0
=
1 / | | -7 + 3*x | ----------------- dx | ______________ | / 2 | \/ 1 + x - 5*x | / 0
Integral((-7 + 3*x)/sqrt(1 + x^2 - 5*x), (x, 0, 1))
(-2.55521669473954 + 4.67768686993639j)
(-2.55521669473954 + 4.67768686993639j)
Use the examples entering the upper and lower limits of integration.