Mister Exam

Other calculators

Integral of (3x-7)/(sqrt(x^2-5x+1)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |       3*x - 7        
 |  ----------------- dx
 |     ______________   
 |    /  2              
 |  \/  x  - 5*x + 1    
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \frac{3 x - 7}{\sqrt{\left(x^{2} - 5 x\right) + 1}}\, dx$$
Integral((3*x - 7)/sqrt(x^2 - 5*x + 1), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Don't know the steps in finding this integral.

        But the integral is

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Don't know the steps in finding this integral.

        But the integral is

      So, the result is:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                               /                           /                    
 |                               |                           |                     
 |      3*x - 7                  |         1                 |         x           
 | ----------------- dx = C - 7* | ----------------- dx + 3* | ----------------- dx
 |    ______________             |    ______________         |    ______________   
 |   /  2                        |   /  2                    |   /      2          
 | \/  x  - 5*x + 1              | \/  x  - 5*x + 1          | \/  1 + x  - 5*x    
 |                               |                           |                     
/                               /                           /                      
$$\int \frac{3 x - 7}{\sqrt{\left(x^{2} - 5 x\right) + 1}}\, dx = C + 3 \int \frac{x}{\sqrt{x^{2} - 5 x + 1}}\, dx - 7 \int \frac{1}{\sqrt{\left(x^{2} - 5 x\right) + 1}}\, dx$$
The answer [src]
  1                     
  /                     
 |                      
 |       -7 + 3*x       
 |  ----------------- dx
 |     ______________   
 |    /      2          
 |  \/  1 + x  - 5*x    
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \frac{3 x - 7}{\sqrt{x^{2} - 5 x + 1}}\, dx$$
=
=
  1                     
  /                     
 |                      
 |       -7 + 3*x       
 |  ----------------- dx
 |     ______________   
 |    /      2          
 |  \/  1 + x  - 5*x    
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \frac{3 x - 7}{\sqrt{x^{2} - 5 x + 1}}\, dx$$
Integral((-7 + 3*x)/sqrt(1 + x^2 - 5*x), (x, 0, 1))
Numerical answer [src]
(-2.55521669473954 + 4.67768686993639j)
(-2.55521669473954 + 4.67768686993639j)

    Use the examples entering the upper and lower limits of integration.