Mister Exam

Integral of 3x³-4x² dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  4                 
  /                 
 |                  
 |  /   3      2\   
 |  \3*x  - 4*x / dx
 |                  
/                   
2                   
24(3x34x2)dx\int\limits_{2}^{4} \left(3 x^{3} - 4 x^{2}\right)\, dx
Integral(3*x^3 - 4*x^2, (x, 2, 4))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      3x3dx=3x3dx\int 3 x^{3}\, dx = 3 \int x^{3}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x3dx=x44\int x^{3}\, dx = \frac{x^{4}}{4}

      So, the result is: 3x44\frac{3 x^{4}}{4}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (4x2)dx=4x2dx\int \left(- 4 x^{2}\right)\, dx = - 4 \int x^{2}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

      So, the result is: 4x33- \frac{4 x^{3}}{3}

    The result is: 3x444x33\frac{3 x^{4}}{4} - \frac{4 x^{3}}{3}

  2. Now simplify:

    x3(9x16)12\frac{x^{3} \left(9 x - 16\right)}{12}

  3. Add the constant of integration:

    x3(9x16)12+constant\frac{x^{3} \left(9 x - 16\right)}{12}+ \mathrm{constant}


The answer is:

x3(9x16)12+constant\frac{x^{3} \left(9 x - 16\right)}{12}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                  
 |                           3      4
 | /   3      2\          4*x    3*x 
 | \3*x  - 4*x / dx = C - ---- + ----
 |                         3      4  
/                                    
(3x34x2)dx=C+3x444x33\int \left(3 x^{3} - 4 x^{2}\right)\, dx = C + \frac{3 x^{4}}{4} - \frac{4 x^{3}}{3}
The graph
2.04.02.22.42.62.83.03.23.43.63.80200
The answer [src]
316/3
3163\frac{316}{3}
=
=
316/3
3163\frac{316}{3}
316/3
Numerical answer [src]
105.333333333333
105.333333333333

    Use the examples entering the upper and lower limits of integration.