Mister Exam

Integral of 3x³-4x² dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  4                 
  /                 
 |                  
 |  /   3      2\   
 |  \3*x  - 4*x / dx
 |                  
/                   
2                   
$$\int\limits_{2}^{4} \left(3 x^{3} - 4 x^{2}\right)\, dx$$
Integral(3*x^3 - 4*x^2, (x, 2, 4))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                  
 |                           3      4
 | /   3      2\          4*x    3*x 
 | \3*x  - 4*x / dx = C - ---- + ----
 |                         3      4  
/                                    
$$\int \left(3 x^{3} - 4 x^{2}\right)\, dx = C + \frac{3 x^{4}}{4} - \frac{4 x^{3}}{3}$$
The graph
The answer [src]
316/3
$$\frac{316}{3}$$
=
=
316/3
$$\frac{316}{3}$$
316/3
Numerical answer [src]
105.333333333333
105.333333333333

    Use the examples entering the upper and lower limits of integration.