Mister Exam

Integral of 3x²+2x³ dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |  /   2      3\   
 |  \3*x  + 2*x / dx
 |                  
/                   
0                   
01(2x3+3x2)dx\int\limits_{0}^{1} \left(2 x^{3} + 3 x^{2}\right)\, dx
Integral(3*x^2 + 2*x^3, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      2x3dx=2x3dx\int 2 x^{3}\, dx = 2 \int x^{3}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x3dx=x44\int x^{3}\, dx = \frac{x^{4}}{4}

      So, the result is: x42\frac{x^{4}}{2}

    1. The integral of a constant times a function is the constant times the integral of the function:

      3x2dx=3x2dx\int 3 x^{2}\, dx = 3 \int x^{2}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

      So, the result is: x3x^{3}

    The result is: x42+x3\frac{x^{4}}{2} + x^{3}

  2. Now simplify:

    x3(x+2)2\frac{x^{3} \left(x + 2\right)}{2}

  3. Add the constant of integration:

    x3(x+2)2+constant\frac{x^{3} \left(x + 2\right)}{2}+ \mathrm{constant}


The answer is:

x3(x+2)2+constant\frac{x^{3} \left(x + 2\right)}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                              
 |                              4
 | /   2      3\           3   x 
 | \3*x  + 2*x / dx = C + x  + --
 |                             2 
/                                
(2x3+3x2)dx=C+x42+x3\int \left(2 x^{3} + 3 x^{2}\right)\, dx = C + \frac{x^{4}}{2} + x^{3}
The graph
0.001.000.100.200.300.400.500.600.700.800.90010
The answer [src]
3/2
32\frac{3}{2}
=
=
3/2
32\frac{3}{2}
3/2
Numerical answer [src]
1.5
1.5

    Use the examples entering the upper and lower limits of integration.