0 / | | 2 | 3*tan (x) - 50 | -------------- dx | 2*tan(x) + 7 | / / ____\ |\/ 10 | -acos|------| \ 10 /
Integral((3*tan(x)^2 - 50)/(2*tan(x) + 7), (x, -acos(sqrt(10)/10), 0))
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Don't know the steps in finding this integral.
But the integral is
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Don't know the steps in finding this integral.
But the integral is
So, the result is:
The result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | | 2 | 3*tan (x) - 50 log(7/2 + tan(x)) / 2 \ | -------------- dx = C - 7*x - ----------------- + log\1 + tan (x)/ | 2*tan(x) + 7 2 | /
/ ____\ |\/ 10 | log(2) log(7/2) -log(10) - 7*acos|------| - ------ - -------- \ 10 / 2 2
=
/ ____\ |\/ 10 | log(2) log(7/2) -log(10) - 7*acos|------| - ------ - -------- \ 10 / 2 2
-log(10) - 7*acos(sqrt(10)/10) - log(2)/2 - log(7/2)/2
Use the examples entering the upper and lower limits of integration.