1 / | | 2 | 3*atan (x) | ---------- dx | 2 | (1 + x) | / 0
Integral((3*atan(x)^2)/(1 + x)^2, (x, 0, 1))
Rewrite the integrand:
The integral of a constant times a function is the constant times the integral of the function:
Don't know the steps in finding this integral.
But the integral is
So, the result is:
Add the constant of integration:
The answer is:
/ / | | | 2 | 2 | 3*atan (x) | atan (x) | ---------- dx = C + 3* | -------- dx | 2 | 2 | (1 + x) | (1 + x) | | / /
1
/
|
| 2
| atan (x)
3* | ------------ dx
| 2
| 1 + x + 2*x
|
/
0
=
1
/
|
| 2
| atan (x)
3* | ------------ dx
| 2
| 1 + x + 2*x
|
/
0
3*Integral(atan(x)^2/(1 + x^2 + 2*x), (x, 0, 1))
Use the examples entering the upper and lower limits of integration.