Mister Exam

Other calculators

Integral of (3arctan^2x)/(1+x)^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |        2      
 |  3*atan (x)   
 |  ---------- dx
 |          2    
 |   (1 + x)     
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{3 \operatorname{atan}^{2}{\left(x \right)}}{\left(x + 1\right)^{2}}\, dx$$
Integral((3*atan(x)^2)/(1 + x)^2, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. Don't know the steps in finding this integral.

      But the integral is

    So, the result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                        /           
 |                        |            
 |       2                |     2      
 | 3*atan (x)             | atan (x)   
 | ---------- dx = C + 3* | -------- dx
 |         2              |        2   
 |  (1 + x)               | (1 + x)    
 |                        |            
/                        /             
$$\int \frac{3 \operatorname{atan}^{2}{\left(x \right)}}{\left(x + 1\right)^{2}}\, dx = C + 3 \int \frac{\operatorname{atan}^{2}{\left(x \right)}}{\left(x + 1\right)^{2}}\, dx$$
The answer [src]
    1                
    /                
   |                 
   |        2        
   |    atan (x)     
3* |  ------------ dx
   |       2         
   |  1 + x  + 2*x   
   |                 
  /                  
  0                  
$$3 \int\limits_{0}^{1} \frac{\operatorname{atan}^{2}{\left(x \right)}}{x^{2} + 2 x + 1}\, dx$$
=
=
    1                
    /                
   |                 
   |        2        
   |    atan (x)     
3* |  ------------ dx
   |       2         
   |  1 + x  + 2*x   
   |                 
  /                  
  0                  
$$3 \int\limits_{0}^{1} \frac{\operatorname{atan}^{2}{\left(x \right)}}{x^{2} + 2 x + 1}\, dx$$
3*Integral(atan(x)^2/(1 + x^2 + 2*x), (x, 0, 1))
Numerical answer [src]
0.259241176461873
0.259241176461873

    Use the examples entering the upper and lower limits of integration.