Mister Exam

Other calculators

Integral of 3sin(3x)+cos(2x+4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                               
  /                               
 |                                
 |  (3*sin(3*x) + cos(2*x + 4)) dx
 |                                
/                                 
0                                 
$$\int\limits_{0}^{1} \left(3 \sin{\left(3 x \right)} + \cos{\left(2 x + 4 \right)}\right)\, dx$$
Integral(3*sin(3*x) + cos(2*x + 4), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of sine is negative cosine:

          So, the result is:

        Now substitute back in:

      So, the result is:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of cosine is sine:

        So, the result is:

      Now substitute back in:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                            
 |                                      sin(2*x + 4)           
 | (3*sin(3*x) + cos(2*x + 4)) dx = C + ------------ - cos(3*x)
 |                                           2                 
/                                                              
$$\int \left(3 \sin{\left(3 x \right)} + \cos{\left(2 x + 4 \right)}\right)\, dx = C + \frac{\sin{\left(2 x + 4 \right)}}{2} - \cos{\left(3 x \right)}$$
The graph
The answer [src]
    sin(6)            sin(4)
1 + ------ - cos(3) - ------
      2                 2   
$$\frac{\sin{\left(6 \right)}}{2} - \frac{\sin{\left(4 \right)}}{2} - \cos{\left(3 \right)} + 1$$
=
=
    sin(6)            sin(4)
1 + ------ - cos(3) - ------
      2                 2   
$$\frac{\sin{\left(6 \right)}}{2} - \frac{\sin{\left(4 \right)}}{2} - \cos{\left(3 \right)} + 1$$
1 + sin(6)/2 - cos(3) - sin(4)/2
Numerical answer [src]
2.22868599515495
2.22868599515495

    Use the examples entering the upper and lower limits of integration.