Mister Exam

Other calculators

Integral of 3cos^3x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |       3      
 |  3*cos (x) dx
 |              
/               
0               
013cos3(x)dx\int\limits_{0}^{1} 3 \cos^{3}{\left(x \right)}\, dx
Integral(3*cos(x)^3, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    3cos3(x)dx=3cos3(x)dx\int 3 \cos^{3}{\left(x \right)}\, dx = 3 \int \cos^{3}{\left(x \right)}\, dx

    1. Rewrite the integrand:

      cos3(x)=(1sin2(x))cos(x)\cos^{3}{\left(x \right)} = \left(1 - \sin^{2}{\left(x \right)}\right) \cos{\left(x \right)}

    2. There are multiple ways to do this integral.

      Method #1

      1. Let u=sin(x)u = \sin{\left(x \right)}.

        Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

        (1u2)du\int \left(1 - u^{2}\right)\, du

        1. Integrate term-by-term:

          1. The integral of a constant is the constant times the variable of integration:

            1du=u\int 1\, du = u

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            So, the result is: u33- \frac{u^{3}}{3}

          The result is: u33+u- \frac{u^{3}}{3} + u

        Now substitute uu back in:

        sin3(x)3+sin(x)- \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}

      Method #2

      1. Rewrite the integrand:

        (1sin2(x))cos(x)=sin2(x)cos(x)+cos(x)\left(1 - \sin^{2}{\left(x \right)}\right) \cos{\left(x \right)} = - \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos{\left(x \right)}

      2. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          (sin2(x)cos(x))dx=sin2(x)cos(x)dx\int \left(- \sin^{2}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - \int \sin^{2}{\left(x \right)} \cos{\left(x \right)}\, dx

          1. Let u=sin(x)u = \sin{\left(x \right)}.

            Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

            u2du\int u^{2}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            Now substitute uu back in:

            sin3(x)3\frac{\sin^{3}{\left(x \right)}}{3}

          So, the result is: sin3(x)3- \frac{\sin^{3}{\left(x \right)}}{3}

        1. The integral of cosine is sine:

          cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

        The result is: sin3(x)3+sin(x)- \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}

      Method #3

      1. Rewrite the integrand:

        (1sin2(x))cos(x)=sin2(x)cos(x)+cos(x)\left(1 - \sin^{2}{\left(x \right)}\right) \cos{\left(x \right)} = - \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos{\left(x \right)}

      2. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          (sin2(x)cos(x))dx=sin2(x)cos(x)dx\int \left(- \sin^{2}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - \int \sin^{2}{\left(x \right)} \cos{\left(x \right)}\, dx

          1. Let u=sin(x)u = \sin{\left(x \right)}.

            Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

            u2du\int u^{2}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            Now substitute uu back in:

            sin3(x)3\frac{\sin^{3}{\left(x \right)}}{3}

          So, the result is: sin3(x)3- \frac{\sin^{3}{\left(x \right)}}{3}

        1. The integral of cosine is sine:

          cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

        The result is: sin3(x)3+sin(x)- \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}

    So, the result is: sin3(x)+3sin(x)- \sin^{3}{\left(x \right)} + 3 \sin{\left(x \right)}

  2. Now simplify:

    (cos2(x)+2)sin(x)\left(\cos^{2}{\left(x \right)} + 2\right) \sin{\left(x \right)}

  3. Add the constant of integration:

    (cos2(x)+2)sin(x)+constant\left(\cos^{2}{\left(x \right)} + 2\right) \sin{\left(x \right)}+ \mathrm{constant}


The answer is:

(cos2(x)+2)sin(x)+constant\left(\cos^{2}{\left(x \right)} + 2\right) \sin{\left(x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                     
 |                                      
 |      3                3              
 | 3*cos (x) dx = C - sin (x) + 3*sin(x)
 |                                      
/                                       
3cos3(x)dx=Csin3(x)+3sin(x)\int 3 \cos^{3}{\left(x \right)}\, dx = C - \sin^{3}{\left(x \right)} + 3 \sin{\left(x \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.9005
The answer [src]
     3              
- sin (1) + 3*sin(1)
sin3(1)+3sin(1)- \sin^{3}{\left(1 \right)} + 3 \sin{\left(1 \right)}
=
=
     3              
- sin (1) + 3*sin(1)
sin3(1)+3sin(1)- \sin^{3}{\left(1 \right)} + 3 \sin{\left(1 \right)}
-sin(1)^3 + 3*sin(1)
Numerical answer [src]
1.92858971783273
1.92858971783273

    Use the examples entering the upper and lower limits of integration.