Mister Exam

Integral of 2x+6 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |  (2*x + 6) dx
 |              
/               
0               
01(2x+6)dx\int\limits_{0}^{1} \left(2 x + 6\right)\, dx
Integral(2*x + 6, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      2xdx=2xdx\int 2 x\, dx = 2 \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: x2x^{2}

    1. The integral of a constant is the constant times the variable of integration:

      6dx=6x\int 6\, dx = 6 x

    The result is: x2+6xx^{2} + 6 x

  2. Now simplify:

    x(x+6)x \left(x + 6\right)

  3. Add the constant of integration:

    x(x+6)+constantx \left(x + 6\right)+ \mathrm{constant}


The answer is:

x(x+6)+constantx \left(x + 6\right)+ \mathrm{constant}

The answer (Indefinite) [src]
  /                           
 |                     2      
 | (2*x + 6) dx = C + x  + 6*x
 |                            
/                             
x2+6xx^2+6\,x
The graph
0.001.000.100.200.300.400.500.600.700.800.90010
The answer [src]
7
77
=
=
7
77
Numerical answer [src]
7.0
7.0
The graph
Integral of 2x+6 dx

    Use the examples entering the upper and lower limits of integration.