________ / 2 \/ 4 - x / | | (2*x - y) dy | / ________ / 2 -\/ 4 - x
Integral(2*x - y, (y, -sqrt(4 - x^2), sqrt(4 - x^2)))
Integrate term-by-term:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The result is:
Now simplify:
Add the constant of integration:
The answer is:
/ 2 | y | (2*x - y) dy = C - -- + 2*x*y | 2 /
________ / 2 4*x*\/ 4 - x
=
________ / 2 4*x*\/ 4 - x
4*x*sqrt(4 - x^2)
Use the examples entering the upper and lower limits of integration.