Mister Exam

Integral of 2x-y dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     ________            
    /      2             
  \/  4 - x              
       /                 
      |                  
      |      (2*x - y) dy
      |                  
     /                   
    ________             
   /      2              
-\/  4 - x               
$$\int\limits_{- \sqrt{4 - x^{2}}}^{\sqrt{4 - x^{2}}} \left(2 x - y\right)\, dy$$
Integral(2*x - y, (y, -sqrt(4 - x^2), sqrt(4 - x^2)))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant is the constant times the variable of integration:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                    2        
 |                    y         
 | (2*x - y) dy = C - -- + 2*x*y
 |                    2         
/                               
$$\int \left(2 x - y\right)\, dy = C + 2 x y - \frac{y^{2}}{2}$$
The answer [src]
       ________
      /      2 
4*x*\/  4 - x  
$$4 x \sqrt{4 - x^{2}}$$
=
=
       ________
      /      2 
4*x*\/  4 - x  
$$4 x \sqrt{4 - x^{2}}$$
4*x*sqrt(4 - x^2)

    Use the examples entering the upper and lower limits of integration.