Mister Exam

Other calculators

Integral of (2x-1)/(3^x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo           
  /           
 |            
 |  2*x - 1   
 |  ------- dx
 |      x     
 |     3      
 |            
/             
1             
$$\int\limits_{1}^{\infty} \frac{2 x - 1}{3^{x}}\, dx$$
Integral((2*x - 1)/3^x, (x, 1, oo))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Don't know the steps in finding this integral.

        But the integral is

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of an exponential function is itself divided by the natural logarithm of the base.

          So, the result is:

        Now substitute back in:

      So, the result is:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                               
 |                    -x        -x                
 | 2*x - 1           3       2*3  *(-1 - x*log(3))
 | ------- dx = C + ------ + ---------------------
 |     x            log(3)             2          
 |    3                             log (3)       
 |                                                
/                                                 
$$\int \frac{2 x - 1}{3^{x}}\, dx = C + \frac{2 \cdot 3^{- x} \left(- x \log{\left(3 \right)} - 1\right)}{\log{\left(3 \right)}^{2}} + \frac{3^{- x}}{\log{\left(3 \right)}}$$
The graph
The answer [src]
-(-2 - log(3)) 
---------------
        2      
   3*log (3)   
$$- \frac{-2 - \log{\left(3 \right)}}{3 \log{\left(3 \right)}^{2}}$$
=
=
-(-2 - log(3)) 
---------------
        2      
   3*log (3)   
$$- \frac{-2 - \log{\left(3 \right)}}{3 \log{\left(3 \right)}^{2}}$$
-(-2 - log(3))/(3*log(3)^2)

    Use the examples entering the upper and lower limits of integration.