Mister Exam

Other calculators

Integral of (2x-5)/(x*sqrt(3x+4)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |     2*x - 5      
 |  ------------- dx
 |      _________   
 |  x*\/ 3*x + 4    
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \frac{2 x - 5}{x \sqrt{3 x + 4}}\, dx$$
Integral((2*x - 5)/((x*sqrt(3*x + 4))), (x, 0, 1))
The answer (Indefinite) [src]
                               /          2     \                        /         2     \
  /                       5*log|-1 + -----------|                   5*log|1 + -----------|
 |                             |       _________|       _________        |      _________|
 |    2*x - 5                  \     \/ 3*x + 4 /   4*\/ 3*x + 4         \    \/ 3*x + 4 /
 | ------------- dx = C - ----------------------- + ------------- + ----------------------
 |     _________                     2                    3                   2           
 | x*\/ 3*x + 4                                                                           
 |                                                                                        
/                                                                                         
$$\int \frac{2 x - 5}{x \sqrt{3 x + 4}}\, dx = C + \frac{4 \sqrt{3 x + 4}}{3} - \frac{5 \log{\left(-1 + \frac{2}{\sqrt{3 x + 4}} \right)}}{2} + \frac{5 \log{\left(1 + \frac{2}{\sqrt{3 x + 4}} \right)}}{2}$$
The graph
The answer [src]
      5*pi*I
-oo - ------
        2   
$$-\infty - \frac{5 i \pi}{2}$$
=
=
      5*pi*I
-oo - ------
        2   
$$-\infty - \frac{5 i \pi}{2}$$
-oo - 5*pi*i/2
Numerical answer [src]
-108.616819865601
-108.616819865601

    Use the examples entering the upper and lower limits of integration.