Mister Exam

Integral of 2x³ dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  5        
  /        
 |         
 |     3   
 |  2*x  dx
 |         
/          
-2         
252x3dx\int\limits_{-2}^{5} 2 x^{3}\, dx
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    2x3dx=2x3dx\int 2 x^{3}\, dx = 2 \int x^{3}\, dx

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      x3dx=x44\int x^{3}\, dx = \frac{x^{4}}{4}

    So, the result is: x42\frac{x^{4}}{2}

  2. Add the constant of integration:

    x42+constant\frac{x^{4}}{2}+ \mathrm{constant}


The answer is:

x42+constant\frac{x^{4}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                
 |                4
 |    3          x 
 | 2*x  dx = C + --
 |               2 
/                  
x42{{x^4}\over{2}}
The graph
-2.0-1.5-1.0-0.55.00.00.51.01.52.02.53.03.54.04.5-500500
The answer [src]
609/2
6092\frac{609}{2}
=
=
609/2
6092\frac{609}{2}
Numerical answer [src]
304.5
304.5
The graph
Integral of 2x³ dx

    Use the examples entering the upper and lower limits of integration.