Mister Exam

Integral of 2t⁵-8t³-8t³ dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                        
  /                        
 |                         
 |  /   5      3      3\   
 |  \2*t  - 8*t  - 8*t / dt
 |                         
/                          
0                          
$$\int\limits_{0}^{1} \left(- 8 t^{3} + \left(2 t^{5} - 8 t^{3}\right)\right)\, dt$$
Integral(2*t^5 - 8*t^3 - 8*t^3, (t, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      The result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                       
 |                                       6
 | /   5      3      3\             4   t 
 | \2*t  - 8*t  - 8*t / dt = C - 4*t  + --
 |                                      3 
/                                         
$$\int \left(- 8 t^{3} + \left(2 t^{5} - 8 t^{3}\right)\right)\, dt = C + \frac{t^{6}}{3} - 4 t^{4}$$
The graph
The answer [src]
-11/3
$$- \frac{11}{3}$$
=
=
-11/3
$$- \frac{11}{3}$$
-11/3
Numerical answer [src]
-3.66666666666667
-3.66666666666667
The graph
Integral of 2t⁵-8t³-8t³ dx

    Use the examples entering the upper and lower limits of integration.