Mister Exam

Integral of 2sec(3x)tan(3x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |  2*sec(3*x)*tan(3*x) dx
 |                        
/                         
0                         
012tan(3x)sec(3x)dx\int\limits_{0}^{1} 2 \tan{\left(3 x \right)} \sec{\left(3 x \right)}\, dx
Integral(2*sec(3*x)*tan(3*x), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    2tan(3x)sec(3x)dx=2tan(3x)sec(3x)dx\int 2 \tan{\left(3 x \right)} \sec{\left(3 x \right)}\, dx = 2 \int \tan{\left(3 x \right)} \sec{\left(3 x \right)}\, dx

    1. There are multiple ways to do this integral.

      Method #1

      1. Let u=sec(3x)u = \sec{\left(3 x \right)}.

        Then let du=3tan(3x)sec(3x)dxdu = 3 \tan{\left(3 x \right)} \sec{\left(3 x \right)} dx and substitute du3\frac{du}{3}:

        19du\int \frac{1}{9}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          13du=1du3\int \frac{1}{3}\, du = \frac{\int 1\, du}{3}

          1. The integral of a constant is the constant times the variable of integration:

            1du=u\int 1\, du = u

          So, the result is: u3\frac{u}{3}

        Now substitute uu back in:

        sec(3x)3\frac{\sec{\left(3 x \right)}}{3}

      Method #2

      1. Let u=3xu = 3 x.

        Then let du=3dxdu = 3 dx and substitute du3\frac{du}{3}:

        tan(u)sec(u)9du\int \frac{\tan{\left(u \right)} \sec{\left(u \right)}}{9}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          tan(u)sec(u)3du=tan(u)sec(u)du3\int \frac{\tan{\left(u \right)} \sec{\left(u \right)}}{3}\, du = \frac{\int \tan{\left(u \right)} \sec{\left(u \right)}\, du}{3}

          1. The integral of secant times tangent is secant:

            tan(u)sec(u)du=sec(u)\int \tan{\left(u \right)} \sec{\left(u \right)}\, du = \sec{\left(u \right)}

          So, the result is: sec(u)3\frac{\sec{\left(u \right)}}{3}

        Now substitute uu back in:

        sec(3x)3\frac{\sec{\left(3 x \right)}}{3}

    So, the result is: 2sec(3x)3\frac{2 \sec{\left(3 x \right)}}{3}

  2. Add the constant of integration:

    2sec(3x)3+constant\frac{2 \sec{\left(3 x \right)}}{3}+ \mathrm{constant}


The answer is:

2sec(3x)3+constant\frac{2 \sec{\left(3 x \right)}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                       
 |                              2*sec(3*x)
 | 2*sec(3*x)*tan(3*x) dx = C + ----------
 |                                  3     
/                                         
23cos(3x){{2}\over{3\,\cos \left(3\,x\right)}}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-50000005000000
The answer [src]
oo
%a{\it \%a}
=
=
oo
\infty
Numerical answer [src]
3211.39622973348
3211.39622973348
The graph
Integral of 2sec(3x)tan(3x) dx

    Use the examples entering the upper and lower limits of integration.