Integral of 2sec(3x)tan(3x) dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫2tan(3x)sec(3x)dx=2∫tan(3x)sec(3x)dx
-
There are multiple ways to do this integral.
Method #1
-
Let u=sec(3x).
Then let du=3tan(3x)sec(3x)dx and substitute 3du:
∫91du
-
The integral of a constant times a function is the constant times the integral of the function:
∫31du=3∫1du
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
So, the result is: 3u
Now substitute u back in:
3sec(3x)
Method #2
-
Let u=3x.
Then let du=3dx and substitute 3du:
∫9tan(u)sec(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫3tan(u)sec(u)du=3∫tan(u)sec(u)du
-
The integral of secant times tangent is secant:
∫tan(u)sec(u)du=sec(u)
So, the result is: 3sec(u)
Now substitute u back in:
3sec(3x)
So, the result is: 32sec(3x)
-
Add the constant of integration:
32sec(3x)+constant
The answer is:
32sec(3x)+constant
The answer (Indefinite)
[src]
/
| 2*sec(3*x)
| 2*sec(3*x)*tan(3*x) dx = C + ----------
| 3
/
3cos(3x)2
The graph
Use the examples entering the upper and lower limits of integration.