Mister Exam

Other calculators

Integral of 2ln(x+1)/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2                
 e                 
  /                
 |                 
 |  2*log(x + 1)   
 |  ------------ dx
 |       x         
 |                 
/                  
E                  
$$\int\limits_{e}^{e^{2}} \frac{2 \log{\left(x + 1 \right)}}{x}\, dx$$
Integral((2*log(x + 1))/x, (x, E, exp(2)))
The answer (Indefinite) [src]
  /                                           
 |                                            
 | 2*log(x + 1)                   /      pi*I\
 | ------------ dx = C - 2*polylog\2, x*e    /
 |      x                                     
 |                                            
/                                             
$$\int \frac{2 \log{\left(x + 1 \right)}}{x}\, dx = C - 2 \operatorname{Li}_{2}\left(x e^{i \pi}\right)$$
The graph
The answer [src]
           /    2  pi*I\            /      pi*I\
- 2*polylog\2, e *e    / + 2*polylog\2, E*e    /
$$2 \operatorname{Li}_{2}\left(e e^{i \pi}\right) - 2 \operatorname{Li}_{2}\left(e^{i \pi} e^{2}\right)$$
=
=
           /    2  pi*I\            /      pi*I\
- 2*polylog\2, e *e    / + 2*polylog\2, E*e    /
$$2 \operatorname{Li}_{2}\left(e e^{i \pi}\right) - 2 \operatorname{Li}_{2}\left(e^{i \pi} e^{2}\right)$$
-2*polylog(2, exp(2)*exp_polar(pi*i)) + 2*polylog(2, E*exp_polar(pi*i))
Numerical answer [src]
3.41527102337806
3.41527102337806

    Use the examples entering the upper and lower limits of integration.